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Quantum channels

A quantum channel i1s a model for a noisy communication link between
a quantum sender Alice and a quantum receiver Bob.
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A quantum channel can transmit different types of information:

quantum, private, classical information
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Classical information transmission
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Relevant quantity: codebook size log M
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Private information transmission
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Quantum information transmission

Relevant quantity: subspace size log |R)]
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Quantum channel capacities

Channel capacities quantify how much information a channel can transmit faithfully.
Curiously, this question may be very hard to answer for quantum channels!
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Talk outline

1. Quantum channel capacities and (super-)additivity
2. The platypus channel and 1ts capacities
3. Strong superadditivity of the platypus channel

4. Further results and open problems
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Quantum channel capacities

Quantum channel N: A — B:

completely positive, trace-preserving linear map L(Ha) — L(Hg).

Quantum channel capacity Is defined as the optimal rate of

faithful transmission of {quantum, private, classical} information via N

Quantum capacity Private capacity Classical capacity

QN) P(N) CNV)

VA
VA
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Some technical definitions

Complementary channel N'¢ models loss to the environment: A B
_ t c _ T
If N(X) =1tre VXVT, then N(X) =trg VXVT. A V isometry
Quantum state: p€ L(H), p >0, trp=1
N€ E

Von Neumann entropy: S(p) = —trplogp
Mutual information: /(A; B) = S(A) + S(B) — S(AB)
for a bipartite state pag and S(X) = S(px)

Quantum state ensemble {p;, o'y} can be encoded in a
classical-quantum state pxa = > pi|/) {i|x ® P,

with mutual information: /(X;A) = S(> . pioh) — > piS(ph).
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Coding theorems for quantum channel capacities

Quantum capacity with the coherent information

R(N) = sup — Q(l)(N®”) QW(N) = max {/(X B) — I(X; E)}.

neN [l 1pi. Wj!

Private capacity with the private information
1

P(N) = sup = P (N©EM) PL(N) = {max{/(X B) — I(X; E)}.
neN [ pi.Pi }

Classical capacity with the Holevo information

C(N) = sup (NN CONY = max I(X: B)

neN N {pi.oi}
|Schumacher & Westmoreland '97, Lloyd '97, Holevo '98, Shor '02, Cai et al. '04, Devetak '05, ,
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Operational interpretation of coding theorems

Quantum capacity: Q(N) = sup, ey = QI (NEM)

n

Rewrite the coherent information as QM (N) = |qp1>ax {S(IN(¢Y4)) — S(idr QN (Yra))}.

QW) = QW(N) > S(B) — S(RB) QW) = 3QWN®%) > 3(S(B°) — S(RB?))
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Superadditivity of information quantities

Superadditivity effects make the reqgularization in these formulas necessary:

For F € {Q, P,C}, we have F(N) = sup %F(l)(/\/@”),

neN

and there are N and n > m such that £ FD(N®") > L F(NEM)

[DiVincenzo et al. '98, Smith et al. '08, Hastings '08]

For the quantum capacity, we can even have the following:

There are channels A" and M such that QN @ M) > QN) + Q(M).

[Smith & Yard '08, Brand3do et al. '12]
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Weakly and strongly additive channels

For certain quantum channels the information quantities F(1)(+)

are additive and regularization is not needed: F(N) = F(I(N).
(F e{Q, P C})

We distinguish between two types of additivity:

Weak additivity: Strong additivity:
For all n € N, For all channels M.

FOO(ANE) = nFO(N). FOWN @ M) = FO(N) + FB(M).




Additivity and non-additivity
There are many results for additivity or lack thereof. (Ask me for references!)

But the situation Is rather different for the capacities Q, P, C:

Classical capacity C

Many classes of strongly additive channels are known (entanglement-breaking,
depolarizing, unital qubit, ...), but no explicit example of superadditivity.

Quantum capacity @, private capacity P

Only three classes of weakly additive channels are known (degradable, anti-deg.,

PPT), but plenty of explicit examples of superadditivity.
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Talk outline

1. Quantum channel capacities and (super-)additivity
2. The platypus channel and its capacities
3. Strong superadditivity of the platypus channel

4. Further results and open problems
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Platypus channel: Stitching simple channels

Consider two simple and additive channels for s € [0, 1/2]:

Ni: V4|0) = +/s|00) + /1 — s|11) N>: Vi|1) = [20)
Vi|1) = [20)

N7 is a degradable channel: N5 is an antidegradable channel:

There exists a degrading map There exists an antidegrading map
D: Bl%El S.T. NfZDONl. A: EQ%BQ S.t. NQZAONQC.



Platypus channel: Stitching simple channels

Ni1: V1]0) = +/5]00) ++/1 — s|11) N> Vi[1) = |20)

Vi|1) = [20) \2|2) = [21)
Capacities of each of the channels are known:
QUM(N) = QW1) = P(W7) = f(s), C(NM) =1 RN2) = P(N2) = C(N2) =0

Platypus channel: Stitch Ay and N, together along |1).

V
V
V

0) = +/s|00) ++/1 — s|11)
1) = [20)

2> = 21> [Wang & Duan '18, Siddhu '21]
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Weak additivity of the platypus channel

Capacities of the platypus channel:
0.95

QW (N) = Q(N) 0.0

0.85

PONG) = P(AL)

0.8

C(l)(Ns) = C(Ns) 0.1

—_— Q(l)(NS)
----- QR(Ns) <log(1+ V1 —s)

" o | 071 — PN, = C(WVL)
up to the "spin alignment conjecture”, 1 1 1 |
more later. 0 0.1 0.2 0.3 0.4 0.5
S

The platypus channel does not belong to any of the known additive
channel classes, yet its information quantities are all weakly additive!
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Weak additivity of the platypus channel

Private and classical capacity: P(Ns) =1 = C(N)

1< PONL) < PNG) < CNL) < 1

Private code with p; =1/2 = p», Strong converse SDP upper bound
o1 = 10)(0] and po = s|1)(1| + (1 — 5)|2)(2] from [Wang et al. '17] evaluates to 1

achieves P((NG) > [(X;: B) — I(X; E) = 1. (analytically by picking feasible sol).

This also means that P(Ns) and C(MNs) have the strong converse property!
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Spin alignment conjecture

Quantum capacity: QM) (N5) = Q(N5) if the following conjecture is true:

Spin alignment conjecture: Let n € N, {Xum}mcs a prob. dist., and Q = (; ) ) )
— S

min. S(p)

subject to: p = Z Xy & Q®IMe has the solution wy, = |1><1\®|M|
W] ) for all M C [n].

wpy > 0, tr(wy) = 1.

Solved for n =1 and all s, for n =2 when s = 1/2, numerical evidence for n < 6.

Mohammad Alhejji has a proof for all Rényi entropies of integer order!
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Separation of quantum and private capacity

Even without the spin alignment conjecture,

we have an analytical upper bound

Q(Ns) <log(1l+ 1 —5)

0.95

0.9
obtained by analytically solving 0.85
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an SDP upper bound. 0.8

[Werner & Holevo '01, Wang et al. '18]

0.75 [{— QW (N;)

----- Q(Ns) <log(1+ V1 -—>5)
0711 — P(VL) = C(ML)

0 0.1 0.2 0.3 0.4 0.5

This proves a strict separation Q(Ns) < P(Ns) for s > 0!
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Talk outline

1. Quantum channel capacities and (super-)additivity
2. The platypus channel and 1ts capacities
3. Strong superadditivity of the platypus channel

4. Further results and open problems
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Strong superadditivity of the platypus channel

Platypus channel 1s weakly additive but not strongly additive for
quantum information transmission:

QUN: @ K) > QM(NG) + QU(K)

where the second channel IC can be one of:

erasure channel &,, depolarizing channel D,, qubit Pauli channels,

amplitude damping channel A,, random qubit channels, ...

= JC can be pretty generic, and may even have capacity itself!
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Strong superadditivity of the platypus channel

1077
8 | | |
WN-2 ) > QW(N) + (K | — QW(N ® Ayjp) — QW(N) ]
Q ( S® ) Q ( S) Q ( ) I _Q(l)(Ns®51/2)_Q(l)(Ns)
6 || — Q(l)(NS R Dy ) — Q(l)(Ns) i
s | Normalized UB on Q(N5)
Modulo spin alignment conjecture, .l
superadditivity also holds for q. cap.: 2|
QN ® K) > Q(N5) + Q(K) ‘|
1 -
if KCis € or Ay (since @ is known o
for these channels). ¥ | s
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Strong superadditivity of the platypus channel

A single code ansatz achieves superadditivity for all channels:

We
AT ®® V) RiRoAL A = VWI[0)R1]0) A, |W5) R A

VI w @ ® F VI WI1)R,0) k) A

N
’ ‘w5>R2A2 — \/EIOO>R2A2

V1—20[11)R, A,

R1, R>:  references Xe) A A, = VE[20) a4, + V1 —€|11) 4, A,

Ai:  input to N
A>:  Input to K
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Unconditional superadditivity of quantum capacity

We can define a d-dimensional platypus channel M, (= Ny, for d = 3).

Spin alignment conjecture; QM (My) = Q(My)

SDP upper bound: Q(Myy) < log(1 -

=)
d—1

d-dim. erasure channel &4 » with capacity
R(E4x) = max{(1—2X)logd,0}.

Superadditivity: For d > 5 and A = A\(d),

Q(Mat1 ®Ea ) > QRMay1) + Q(Ed )
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Talk outline

1. Quantum channel capacities and (super-)additivity
2. The platypus channel and 1ts capacities
3. Strong superadditivity of the platypus channel

4. Further results and open problems
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Generalization of platypus to more parameters

We can generalize N,

tO more parameters, €.9.:

WS,,LL — trE(WS"u, . WJ, )

W .
W
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0) = +/s]|00) + /1 — s|11)
1) = /1 —pl10) + /il21)
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Previous observations of the platypus in nature

Vikesh defined the qutrit platypus channel In
arXiv:2003.10367 to understand so-called log-singularities
In the coherent information giving rise to superadditivities.

Even earlier, X. Wang and R. Duan defined a unitarily
equivalent channel in arXiv:1608.04508 to study

zero-error capacities of channels.

In arXiv:1610.06381, they studied the private and classical capacity of that channel,
and also noticed the separation of Q(.) and P(.).

Our work motivates the channel using the stitching construction, provides rigorous
analysis of capacities and additivity properties, and generalizes 1t to higher dimensions.
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Conclusion & open problems

The platypus channel 1s a weakly additive channel of a new type that
generically displays strong non-additivity for a variety of channels.
The quantum and private capacity are strictly separated, and the private and

classical capacity satisty the strong converse property.

Strong (non-)additivity for private and classical information?

Can we prove the spin alignment conjecture?

Thank you for your attention!
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