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Entanglement and teleportation

"An entangled state describes the
complete knowledge of the whole
without knowing the state of

any one part.”

- Charles H. Bennett

Photo: Abdus Salam ICTP Dirac Medal Award



Entanglement and teleportation

—ntanglement: strong form of non-local correlation between separated systems.

Incredibly useful for quantum information-processing

when used together with other resources.
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Entanglement and teleportation

Breakthrough result in 1993: Quantum teleportation

Bennett et al. (see image) realized that correlation

In an entangled state and classical communication
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(top, left) Richard Jozsa, William K. Wootters, Charles H.

Bennett. (bottom, left) Gilles Brassard, Claude Crépeau,
Asher Peres. Photo: André Berthiaume.

(o)

can be used to teleport an unknown quantum state.

[Bennett et al. '93] | 4



Standard teleportation protocol

ldea of teleportation:
entanglement + classical channel = quantum channel

O entangled resource state O

/\ qubit to be /\
. teleported

Alice Bob

classical channel
[Bennett et al. '93] | 5



Standard teleportation protocol

Steps:

1) Alice performs Bell measurement on CA;.
2) Alice sends classical outcome | to Bob.
3) Bob applies correction operation V; to B.

[Bennett et al. '93] | 6



Standard teleportation protocol

Advantages: Disadvantage:
e [arget state Is teleported exactly. e Protocol cannot implement unitary U
e Beautifully simple! on teleported state if [U,V,]#0.

[Bennett et al. '93] | 7



Standard teleportation protocol

Advantages: Disadvantage:
e [arget state Is teleported exactly. e Protocol cannot implement unitary U
e Beautifully simple! on teleported state if [U,V,]#0.

Port-based teleportation 1s a variant of standard teleportation:

"Disadvantages": Advantage:
e State Is teleported approximately. e Protocol can implement arbitrary
e Slightly more complicated. unitary U on teleported state.
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Port-based teleportation

[Ishizaka, Hiroshima '08]
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Port-based teleportation

[Ishizaka, Hiroshima '08]
Steps: R

1) Measurement ><
2) Classical communication : 3)
3) Correction :

O 1) : < Trl-c




Port-based teleportation

Z
) U
©,

Unitary covariance:
"Correction" (partial trace)
commutes with any unitary applied

to all of Bob's ports.

Initial state |¥)c is teleported to U|Y)c.

Caveat:
Protocol cannot be perfect for
finite resources. (N < o0)

[Nielsen, Chuang '97] | 12



Port-based teleportation

(/) Nevertheless, unitary covariance

enables interesting applications of PBT:
U — Universal programmable
quantum processors

Y U 4 Attacks on position-based
@ cryptography
o © — Quantum channel discrimination
o o U

[Ishizaka, Hiroshima '08; Beigi, Konig '11; Buhrman et al. '14; Pirandola et al. '19] | 13



Quantifying performance of PBT

Goal of PBT:

Approximate identity channel
C — B; = C’.

Let A: C — C’ denote the effective

e teleportation channel.

@ . Entanglement fidelity:

F(A) =Tr |95 (A®id) (©Fa)]

| 14



PBT and state discrimination

n Fundamental insight:

Teleporting C of &, through ports

IS equivalent to distinguishing states

ni = Nang, With uniform prior +:

N
F(/\) — E/Dsucc

—quivalence holds more generally for

arbitrary port states pavgn.

[Ishizaka, Hiroshima '08] | 15



Semidefinite programming

State discrimination problem: distinguish states n; with prior probabilities p;.

Primal problem P Dual problem D
N
Maximize: »  p; Tr(niE;) Minimize: Tr K
=1
subject to: E; > 0 for all 1, subject to: K > p;n; for all 1.
N
Y Ei=1.

=1

Strong duality: p,cc = P = D.



Semidefinite programming

State discrimination problem: distinguish states n; with prior probabilities p;.

Primal problem P Dual problem D
Minimize: Tr K
subject to: K > p;n; for all 1.

POVM: most general definition of
quantum measurement

m
|V
-
o
=
l

Strong duality: p,cc = P = D.



PBT and state discrimination

T

Port state: NN max. entangled states

PANBN — (q)i\_g)@/v

State discrimination problem:

1

pi:N

What 1s a good choice for the
POVM (measurement)?



Pretty good measurement

n, Define average state 11 = Z,/V:l pDiM;.

Measurement operators:

Ei — 777_1/2 PiTi 777_1/2

—asy to check:
1) E; > 0 for all i;

2) > .. Ei =suppm.
State discrimination success prob.:

1) pdot < Ppgm < Popt

[Hausladen, Wootters '94], [Barnum, Knill '02] | 19



Asymptotically faithful port-based teleportation

Pretty good measurement achieves p,qm ~ d*/N, and hence:

[Ishizaka, Hiroshima '08]
[Beigi, Konig '11]

—ntanglement fidelity F = 2 Ppgm — 1 as N — oo.

No-Go theorem: Port-based teleportation cannot be exact with finite resources

because of the unitary covariance property.

For fixed local port dimension d, port-based teleportation using PGM becomes

asymptotically exact when taking the number of ports N — oc.

Main result of arXiv:2008.11194: PGM s in fact the optimal measurement. ‘
20
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Symmetries in state discrimination problem

Fundamental symmetry of the maximally entangled state:

(U@ U*)|dT)ap = |®T)ap for all unitaries U.

State ensemble: 1 . .
@ U®PN=1 invariance

=y @ (gla)?V (U U*) |
- I

Invariance I I
Resulting symmetries: @ °0e
\

[U®N ® U™, ?7,': = 0

Sn_1 Invariance

Apg @m ni|l =0 (7€ Sn_1) .



Symmetries in state discrimination problem

Average ensemble state:
=0k 5 @ (21,)9N-1 4oy CD/_XNBN @ (31,4)®N1

(B; = B) U®N=1 invariance

(U® U") e

e L) () () e ()
. . o0 o
Resulting symmetries:

UV @ U*, 7| =0

: =0 (me Sy) Sy Invariance

1g®m
03

-



Symmetries on tensor product spaces

Representation space (C?)®N. c? cv c? c“

ORORONO

Symmetric group Sy: ﬂ>$$<
ST Y1) @ .. Q| YN) = [Wr 1) @ .. @ Y1)
ONORONO,

Unitary group Uy u (U (U U
U D U: Y1) @ ... @ Yn) — Ul @ ... @ U lppn) '

oYoxoxe

T hese two representations commute and span each other's commutant.

— Schur-Weyl duality: (C?)®N decomposes “nicely” into Sy and Uy irreps‘.
24



Irreducible representations

Irreducible representation I1s a space that does not cd Ccd Cd (¢

contain any non-trivial invariant subspaces. @ @ @ @

Partitions 4 = (1, ..., Uqg) Fg N | | 7T>$$<
N=12,d =4

+<— Young diagrams _ u=(523231) @ @ @ @

Irreps of symmetric group Sy: Specht modules \V,, u U U U

Dimension: d, .= dmW, C;) CI) é) é)

Irreps of unitary group Uy: Weyl modules V¢

Dimension: myg,,, = dim V¢



Schur-Weyl duality

Sy and Uy span each other’'s commutants on (C9)®N, c? cv c? c“

Schur-Weyl decomposition: ﬂ>$$<
(€)M = €

B ie v, 0006

Application of Schur’s Lemma: Y

If state p on (C9)®N is invariant under Sy and Uy:

p= & r,1y,e®1y,,  wherer,>0and > r,mg,d, =1
g N g g N




Pieri rule

—nsemble states m; and average state 7 cd Ccd cd cd d

have U* @ U®N symmetry. @ @ @ @ @

| T
Incorporate U* @ U®N symmetry into >$$<

\
Schur-Weyl decomposition using Pieri rule: @ @ @ @ @
CHhyeVi= & Vi ur (U U |u (U

D> 41 v v v v v
Resulting block-diagonal form of 7: @ @ @ @ @

=@ @ salyoly, ()7 =CYe @ view,
pEgN a=p— . uFalV

| 27



Solving the state discrimination problem

Discriminate states 1, = @ o ® (514)®V~1 (with uniform prior).

Pretty good measurement: E; = 7~ 1/2n; 17/2 with average state 1 = >_. n;.

Crucial ingredient: Symmetries of m; and n imply block-diagonal form.

'f] — 69 69 S'u”a ]lvd > ]1\/\/“ N — CDZB X 69 ta’ ]1Vad’ = ]1\/\/&/

|Studzinski et al. '17] | 28



Optimality of pretty good measurement

1

p
Success probability: po.c = ~ > ( > \/md,udp)
Nd aFqgN—1 N u=oa+

Optimality of PGM via SDP duality: psyec = min{Tr K: K > p;n; for all i}.

N
Show that Z 112 mn; 1% is dual feasible:

N
Z ni N2 nn 4 >, for all i For this choice:

Tr K = Psyce-
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Asymptotics of PBT performance

Entanglement fidelity: F(A)

|
Q
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Good: Beautiful closed formula in terms of representation-theoretic data.

Bad: Hard to tell what happens for large number of ports and

fixed local dimension.

Asymptotic limit: d > 2 fixed but arbitrary, N — oo

[Studzinski et al. '17] | 31



Schur-Weyl distribution and spectrum estimation

Recall Schur-Weyl duality: (C/)*N = @ VI @ W,

,ul—dN

Denote by P, the projection onto V¢ @ W,,.

Schur-Weyl distribution: py ()

Spectrum estimation:
Let X ~ pg n(), then

|

\

-
<V

\ .

[Alicki '88], [Keyl, Werner '01] | 32




Fluctuations of the Schur-Weyl distribution

Spectrum estimation:

1 N—)oo\ ( 1

Let X ~ pg n(1), then X > (5, ) in distribution.
Center and normalize YD's: / . U= \
Y= /8 (X (Y, ) — -
“Central limit theorem”: b= *
y 7 spec(G) in distribution, \ T . /

where G ~ GUEq(d) is drawn from the traceless Gaussian unitary ensemble.
[Alicki '88], [Keyl, Werner '01], [Johansson '01] | 33




Asymptotics of PBT performance

. N o
“Central limit theorem”: Y —> spec(G) in distribution.

1 2
Entanglement fidelity: F(\) = —— > ( T ¢md,udp,)
d aFqgN—1 N u=oa+

Idea: Rewrite fidelity as expectation value

F(N)= E [f(a)] for a suitable function f
aI—dN—l

and use CLT above to calculate with f(spec(G)) instead (much easier!).
| 34



Asymptotics of PBT performance

N— o0

“Central limit theorem”: Y > spec(G) in distribution.

Ent. fidel F(N\) = : My ,d T f

nt. fidelity: = ( ) — U a
d ( ) dN+2 al—dzlg—l u,——%:—k \/ S al—dN_]-[ ( )]

Need: Stronger convergence of expectation values for suitable functions f
— main technical result in [arXiv:1809.10751].

Main result: Asymptotic behavior of entanglement fidelity

d?—11

FIN =1- ——+

| O(N%*‘S) (hence F(A) — 1 as N — o)
35
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Fully optimized port-based teleportation

N maximally entangled states CIDj\‘B with pretty good measurement (optimall):

asymptotic behavior F =1 - O(N™1).

symmetrize
Better fidelity when optimizing
over entangled state pavgn? U
Yes, F=1—6O(N2). U -
02 U
Arbitrary PBT protocols: -
Can always assume Uy and Sy J B,

symmetries as discussed before.
[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751] | 37



Fully optimized port-based teleportation

Consider arbitrary port state ¢avgv and corresponding states o; = Trge @ on ANB.

Symmetrization: States o, and average state ¢ again have block-diagonal structure.

Using the same technique as before (symmetries + SDP duality),

we can derive a formula for entanglement fidelity:

F(A) = d/\}+2 mqa}x Z ( Z \/Cu«dumd,u)z

aFqgN—1 u=oa+

p,l—dN

Second main result of arXiv:2008.11194:

The same pretty good measurement as before 1s optimal.
[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751] | 38




Conclusion

Port-based teleportation: approximate teleportation scheme with
unitary covariance that enables interesting applications.

Natural symmetries enable characterization of performance using
tools from representation theory.

Asymptotics of PBT can be derived using interesting connection between
representation theory and random matrix theory.

Can we use these tools to analyze the asymptotic behavior of other
quantum-information theoretic tasks with similar symmetries?

Thank you for your attention! ‘
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