University of Ottawa Quasar Meeting

Symmetries and asymptotics of port-based teleportation

Felix Leditzky

Dept. of Mathematics & IQUIST University of Illinois at Urbana-Champaign

March 17, 2021

Illinois Quantum Information Science and Technology Center

Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGI

Papers and collaborators

First part of the talk:

Optimality of the pretty good measurement for PBT arXiv:2008.11194

Second part of the talk:

Asymptotic performance of port-based teleportation

Joint work with:

M. Christandl

C. Majenz

Comm. Math. Phys. 381, 379-451 (2021); arXiv:1809.10751

G. Smith

F. Speelman

M. Walter

Entanglement and teleportation

Photo: Abdus Salam ICTP Dirac Medal Award

"An entangled state describes the complete knowledge of the whole without knowing the state of any one part."

- Charles H. Bennett

Entanglement and teleportation

Entanglement: strong form of non-local correlation between separated systems.

Incredibly useful for quantum information-processing

when used together with other resources.

Entanglement and teleportation

Breakthrough result in 1993: Quantum teleportation

Bennett et al. (see image) realized that correlation in an entangled state and classical communication can be used to teleport an unknown quantum state.

(top, left) Richard Jozsa, William K. Wootters, Charles H. Bennett. (bottom, left) Gilles Brassard, Claude Crépeau, Asher Peres, Photo: André Berthiaume,

[Bennett et al. '93]

Idea of teleportation:

entanglement + classical channel = quantum channel

[Bennett et al. '93]

classical channel

Steps:

- 1) Alice performs Bell measurement on CA_1 .
- 2) Alice sends classical outcome i to Bob.
- 3) Bob applies correction operation V_i to B.

[Bennett et al. '93]

Advantages:

- Target state is teleported **exactly**.
- Beautifully simple!

Disadvantage:

 Protocol cannot implement unitary U on teleported state if $[U,V_i] \neq 0$.

[Bennett et al. '93]

Advantages:

Disadvantage:

- Target state is teleported **exactly**.
- Protocol cannot implement unitary U on teleported state if $[U,V_i] \neq 0$. • Beautifully simple!

Port-based teleportation is a variant of standard teleportation:

- "Disadvantages": Advantage:
- State is teleported approximately.
- Slightly more complicated.

- - **unitary** U on teleported state.

• Protocol can implement arbitrary

Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks

[Ishizaka, Hiroshima '08]

[Ishizaka, Hiroshima '08]

- "Correction" (partial trace) commutes with any unitary applied
- Initial state $|\psi\rangle_C$ is teleported to $U|\psi\rangle_C$.

Protocol cannot be perfect for $(N < \infty)$

[Nielsen, Chuang '97] 12

[Ishizaka, Hiroshima '08; Beigi, König '11; Buhrman et al. '14; Pirandola et al. '19] 13

- Nevertheless, unitary covariance enables interesting applications of PBT:
 - Universal programmable
 - quantum processors
 - Attacks on position-based
 - Quantum channel discrimination

Quantifying performance of PBT

Approximate identity channel

Let $\Lambda: C \to C'$ denote the effective teleportation channel.

Entanglement fidelity:

 $F(\Lambda) = \operatorname{Tr} \left[\Phi_{C'C''}^+ \left(\Lambda \otimes \operatorname{id} \right) \left(\Phi_{CC''}^+ \right) \right]$

PBT and state discrimination

Fundamental insight: Teleporting *C* of $\Phi_{CC''}^+$ through ports is equivalent to distinguishing states $\eta_i \equiv \eta_{A^N B_i}$ with uniform prior $\frac{1}{N}$:

$$F(\Lambda) = \frac{N}{d^2} p_{\rm succ}$$

Equivalence holds more generally for **arbitrary port states** $\rho_{A^N B^N}$.

[Ishizaka, Hiroshima '08] | 15

Semidefinite programming

State discrimination problem: distinguish states η_i with prior probabilities p_i .

Primal problem P

Maximize:
$$\sum_{i=1}^{N} p_i \operatorname{Tr}(\eta_i E_i)$$
 Min

subject to:
$$E_i \ge 0$$
 for all i , subject to: $\sum_{i=1}^{N} E_i = 1$.

Strong duality: $p_{succ} = P = D$.

Dual problem D

imize: Tr K

ect to: $K \ge p_i \eta_i$ for all *i*.

Semidefinite programming

State discrimination problem: distinguish states η_i with prior probabilities p_i .

Primal problem P

Maximize:
$$\sum_{i=1}^{N} p_i \operatorname{Tr}(\eta_i E_i)$$
 Min
subject to: $E_i \ge 0$ for all i , subject to: $\sum_{i=1}^{N} E_i = 1$.
 $\operatorname{POVM: most}_{quantum means}$

Strong duality: $p_{succ} = P = D$.

Dual problem D

imize: Tr K

ect to: $K \ge p_i \eta_i$ for all *i*.

t general definition of asurement

PBT and state discrimination

Port state: *N* max. entangled states $\rho_{A^N B^N} = (\Phi_{AB}^+)^{\otimes N}$

State discrimination problem:

$$\Phi_{A_iB_i}^+ \otimes (\frac{1}{d}\mathbb{1}_A)^{\otimes N-1}$$
$$\frac{1}{N}$$

What is a good choice for the POVM (measurement)?

Pretty good measurement

- Define average state $\bar{\eta} = \sum_{i=1}^{N} p_i \eta_i$. **Measurement operators:** $E_i = \bar{\eta}^{-1/2} p_i \eta_i \bar{\eta}^{-1/2}$

 - 1) $E_i \geq 0$ for all *i*;
 - 2) $\sum_{i} E_{i} = \operatorname{supp} \overline{\eta}$.
- State discrimination success prob.:
 - 1) $p_{opt}^2 \leq p_{pgm} \leq p_{opt}$
 - [Hausladen, Wootters '94], [Barnum, Knill '02] | 19

Asymptotically faithful port-based teleportation

Pretty good measurement achieves $p_{pqm} \sim d^2/N$, and hence:

Entanglement fidelity
$$F = \frac{N}{d^2} p_{pgm} \longrightarrow 1$$
 as

No-Go theorem: Port-based teleportation cannot be exact with finite resources because of the unitary covariance property.

For fixed local port dimension d, port-based teleportation using PGM becomes asymptotically exact when taking the number of ports $N \to \infty$.

Main result of arXiv:2008.11194: PGM is in fact the optimal measurement.

- [Ishizaka, Hiroshima '08] $N \rightarrow \infty$. [Beigi, König '11]

Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks

Symmetries in state discrimination problem

Fundamental symmetry of the maximally entangled state:

 $(U \otimes U^*) |\Phi^+\rangle_{AB} = |\Phi^+\rangle_{AB}$ for all unitaries U.

State ensemble:

$$\eta_i = \Phi_{A_i B_i}^+ \otimes \left(\frac{1}{d} \mathbb{1}_A\right)^{\otimes N-1} \qquad (U \otimes U^*)$$

invariance

Resulting symmetries:

$$\begin{bmatrix} U^{\otimes N} \otimes U^*, \ \eta_i \end{bmatrix} = 0$$
$$\begin{bmatrix} \mathbbm{1}_{A_i B_i} \otimes \pi, \ \eta_i \end{bmatrix} = 0 \qquad (\pi \in S_{N-1})$$

Symmetries in state discrimination problem

Average ensemble state:

 $(U \otimes U^*)$ invariance

Resulting symmetries:

$$\begin{bmatrix} U^{\otimes N} \otimes U^*, \ \bar{\eta} \end{bmatrix} = 0$$
$$\begin{bmatrix} \mathbb{1}_B \otimes \pi, \ \bar{\eta} \end{bmatrix} = 0 \quad (\pi \in S_N)$$

 $(\mathbb{I}_{\mathcal{A}})^{\otimes N-1}$

Symmetries on tensor product spaces

Representation space $(\mathbb{C}^d)^{\otimes N}$.

Symmetric group S_N : $S_N \ni \pi : |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle \longmapsto |\psi_{\pi^{-1}(1)}\rangle \otimes \ldots \otimes |\psi_{\pi^{-1}(N)}\rangle$

Unitary group \mathcal{U}_d : $\mathcal{U}_d \ni U \colon |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle \longmapsto U |\psi_1\rangle \otimes \ldots \otimes U |\psi_N\rangle$

These two representations commute and span each other's commutant. \longrightarrow Schur-Weyl duality: $(\mathbb{C}^d)^{\otimes N}$ decomposes "nicely" into S_N and \mathcal{U}_d irreps.

Irreducible representations

Irreducible representation is a space that does not contain any non-trivial invariant subspaces.

Partitions
$$\mu = (\mu_1, \ldots, \mu_d) \vdash_d N$$

$$\leftrightarrow$$
 Young diagrams

Irreps of symmetric group S_N : Specht modules W_{μ} Dimension: $d_{\mu} := \dim W_{\mu}$

Irreps of unitary group \mathcal{U}_d : Weyl modules V_{μ}^d Dimension: $m_{d,\mu} := \dim V_{\mu}^{d}$

Schur-Weyl duality

 S_N and \mathcal{U}_d span each other's commutants on $(\mathbb{C}^d)^{\otimes N}$.

Schur-Weyl decomposition:

$$(\mathbb{C}^d)^{\otimes N} = \bigoplus_{\mu \vdash_d N} V^d_{\mu} \otimes W_{\mu}$$

Application of **Schur's Lemma**:

If state ρ on $(\mathbb{C}^d)^{\otimes N}$ is invariant under S_N and \mathcal{U}_d :

$$ho = \bigoplus_{\mu \vdash_d N} r_{\mu} \, \mathbbm{1}_{V_{\mu}^d} \otimes \mathbbm{1}_{W_{\mu}}, \qquad ext{where } r_{\mu} \ge 0 ext{ and }$$

Cd \mathbb{C}^d \mathbb{C}^d π U U U

 $\sum_{\mu\vdash_d N} r_{\mu} m_{d,\mu} d_{\mu} = 1.$

Pieri rule

Ensemble states η_i and average state $\overline{\eta}$ have $U^* \otimes U^{\otimes N}$ symmetry.

Incorporate $U^* \otimes U^{\otimes N}$ symmetry into Schur-Weyl decomposition using **Pieri rule**: $(\mathbb{C}^d)^* \otimes V^d_\mu = \bigoplus_{i:\ \mu_i > \mu_{i+1}} V^d_{\mu-\varepsilon_i}$

Resulting block-diagonal form of $\bar{\eta}$:

$$\bar{\eta} = \bigoplus_{\mu \vdash_d N} \bigoplus_{\alpha = \mu - \Box} s_{\mu,\alpha} \, \mathbb{1}_{V_{\alpha}^d} \otimes \mathbb{1}_{W_{\mu}}$$

Solving the state discrimination problem

Discriminate states $\eta_i = \Phi_{A_iB_i}^+ \otimes (\frac{1}{d}\mathbb{1}_A)^{\otimes N-1}$ (with uniform prior).

Pretty good measurement: $E_i = \bar{\eta}^{-1/2} \eta_i \bar{\eta}^{-1/2}$ with average state $\bar{\eta} = \sum_i \eta_i$.

Crucial ingredient: Symmetries of η_i and $\bar{\eta}$ imply block-diagonal form.

$$\bar{\eta} = \bigoplus_{\mu \vdash_d N} \bigoplus_{\alpha = \mu - \Box} s_{\mu,\alpha} \, \mathbb{1}_{V_{\alpha}^d} \otimes \mathbb{1}_{W_{\mu}} \qquad \qquad \eta_i = \Phi_{A_i B}^+ \otimes \bigoplus_{\alpha' \vdash_d N - 1} t_{\alpha'} \, \mathbb{1}_{V_{\alpha'}^d} \otimes \mathbb{1}_{W_{\alpha'}}$$

Success probability: $p_{\text{succ}} = \frac{1}{N} \sum_{i=1}^{N} \text{Tr}(\eta_i E_i) = \frac{1}{Nd^N}$

$$\overline{N} \sum_{\alpha \vdash_d N-1} \left(\sum_{\mu = \alpha + \Box} \sqrt{m_{d,\mu} d_{\mu}} \right)^2$$

[Studzinski et al. '17] | 28

Optimality of pretty good measurement

Success probability: $p_{\text{succ}} = \frac{1}{Nd^N} \sum_{\alpha \vdash \alpha N = 1} \left(\sum_{\mu = \alpha + \Box} \sqrt{m_{d,\mu} d_{\mu}} \right)^2$

Optimality of PGM via SDP duality: $p_{succ} = \min\{\text{Tr } K : K \ge p_i \eta_i \text{ for all } i\}$.

Show that $K = \frac{1}{N} \sum_{i=1}^{N} \overline{\eta}^{-1/4} \eta_i \overline{\eta}^{-1/2} \eta_i \overline{\eta}^{-1/4}$ is dual feasible:

 $\sum_{i=1}^{N} \bar{\eta}^{-1/4} \eta_i \, \bar{\eta}^{-1/2} \, \eta_i \, \bar{\eta}^{-1/4} \ge \eta_i \text{ for all } i.$

For this choice: $\operatorname{Tr} K = p_{\operatorname{succ}}$.

Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks

Asymptotics of PBT performance

Entanglement fidelity: $F(\Lambda) = \frac{N}{d^2} p_{\text{succ}}$ $=\frac{1}{d^{N+2}}\sum_{\alpha\vdash_{d}N=1}\left(\sum_{\mu=\alpha+\Box}\sqrt{m_{d,\mu}d_{\mu}}\right)^{2}$

Good: Beautiful closed formula in terms of representation-theoretic data.

Bad: Hard to tell what happens for large number of ports and fixed local dimension.

Asymptotic limit: $d \geq 2$ fixed but arbitrary, $N \rightarrow \infty$

[Studzinski et al. '17] | 31

Schur-Weyl distribution and spectrum estimation

Recall Schur-Weyl duality: $(\mathbb{C}^d)^{\otimes N} = \bigoplus_{\mu \vdash_d N} V^d_{\mu} \otimes W_{\mu}$

Denote by P_{μ} the projection onto $V_{\mu}^{d} \otimes W_{\mu}$.

Schur-Weyl distribution: $p_{d,N}(\mu) = \frac{1}{d^N} \operatorname{Tr} P_{\mu}$ $= \frac{m_{d,\mu}d_{\mu}}{d^N}$ **Spectrum estimation:**

Let $\mathbf{X} \sim p_{d,N}(\mu)$, then

$$\frac{1}{N} \mathbf{X} \xrightarrow{N \to \infty} \left(\frac{1}{d}, \dots, \frac{1}{d} \right) \text{ in distribution.}$$

[Alicki '88], [Keyl, Werner '01] | 32

Fluctuations of the Schur-Weyl distribution

Spectrum estimation:

Let
$$\mathbf{X} \sim p_{d,N}(\mu)$$
, then $\frac{1}{N}\mathbf{X} \xrightarrow{N \to \infty} (\frac{1}{d}, \dots, \frac{1}{d})$ in c

Center and normalize YD's:

$$\mathbf{Y} = \sqrt{\frac{d}{N}} \left(\mathbf{X} - \left(\frac{N}{d}, \dots, \frac{N}{d} \right) \right)$$

"Central limit theorem":

$$\mathbf{Y} \xrightarrow{N \to \infty} \operatorname{spec}(\mathbf{G})$$
 in distribution,

where $\mathbf{G} \sim \text{GUE}_0(d)$ is drawn from the traceless Gaussian unitary ensemble. [Alicki '88], [Keyl, Werner '01], [Johansson '01] 33

distribution.

Asymptotics of PBT performance

"Central limit theorem": $\mathbf{Y} \xrightarrow{N \to \infty} \operatorname{spec}(\mathbf{G})$ in distribution.

Entanglement fidelity: $F(\Lambda) = \frac{1}{d^{N+2}} \sum_{\alpha \vdash_d N-1} \left(\sum_{\mu = \alpha + \Box} \sqrt{m_{d,\mu} d_{\mu}} \right)^2$

Idea: Rewrite fidelity as expectation value

 $F(\Lambda) = \mathbb{E}_{\alpha \vdash \sqrt{N-1}}[f(\alpha)]$ for a suitable function f

and use CLT above to calculate with $\tilde{f}(\text{spec}(\mathbf{G}))$ instead (much easier!).

Asymptotics of PBT performance

"Central limit theorem": $Y \xrightarrow{N \to \infty} \text{spec}(G)$ in distribution.

Ent. fidelity:
$$F(\Lambda) = \frac{1}{d^{N+2}} \sum_{\alpha \vdash_d N-1} \left(\sum_{\mu=\alpha+\Box} \sqrt{m_{d,\mu} d_{\mu}} \right)^2 = \mathbb{E}_{\alpha \vdash_d N-1} [f(\alpha)]$$

Need: Stronger convergence of expectation values for suitable functions f \rightarrow main technical result in [arXiv:1809.10751].

Main result: Asymptotic behavior of entanglement fidelity

$$F(\Lambda) = 1 - \frac{d^2 - 1}{4} \frac{1}{N} + O(N^{-\frac{3}{2} + \delta}) \quad \text{(he}$$

ence $F(\Lambda) \rightarrow 1$ as $N \rightarrow \infty$)

Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks

Fully optimized port-based teleportation

N maximally entangled states Φ_{AB}^+ with pretty good measurement (optimal!):

asymptotic behavior $F = 1 - O(N^{-1})$.

Better fidelity when optimizing over entangled state $\rho_{A^NB^N}$?

Yes,
$$F = 1 - \Theta(N^{-2})$$
.

Arbitrary PBT protocols:

Can always assume \mathcal{U}_d and S_N symmetries as discussed before.

[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751] | 37

Fully optimized port-based teleportation

Consider arbitrary port state $\phi_{A^N B^N}$ and corresponding states $\sigma_i = \text{Tr}_{B_i^c} \phi$ on $A^N B$.

Symmetrization: States σ_i and average state $\bar{\sigma}$ again have block-diagonal structure. Using the same technique as before (symmetries + SDP duality), we can derive a formula for entanglement fidelity:

$$F(\Lambda) = \frac{1}{d^{N+2}} \max_{c_{\mu}} \sum_{\alpha \vdash_{d} N-1} \left(\sum_{\mu=\alpha+\Box} \sqrt{c_{\mu} d_{\mu} m_{d,\mu}} \right)^{2}$$

where $\sum_{\mu \vdash_{d} N} c_{\mu} d_{\mu} m_{d,\mu}$

Second main result of arXiv:2008.11194:

The **same** pretty good measurement as before is optimal. [Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751] 38

Conclusion

Port-based teleportation: approximate teleportation scheme with unitary covariance that enables interesting applications.

Natural symmetries enable characterization of performance using tools from representation theory.

Asymptotics of PBT can be derived using interesting connection between representation theory and random matrix theory.

Can we use these tools to analyze the asymptotic behavior of other quantum-information theoretic tasks with similar symmetries?

Thank you for your attention!