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Entanglement and teleportation

"An entangled state describes the
complete knowledge of the whole
without knowing the state of

any one part."

- Charles H. Bennett
(Shannon Award 2020)

Photo: Abdus Salam ICTP Dirac Medal Award



Entanglement and teleportation

—ntanglement: strong form of non-local correlation between separated systems.

Incredibly useful for quantum information-processing

when used together with other resources.
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Entanglement and teleportation

Breakthrough result in 1993: Quantum teleportation

Bennett et al. (see image) realized that correlation

In an entangled state and classical communication
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(top, left) Richard Jozsa, William K. Wootters, Charles H.

Bennett. (bottom, left) Gilles Brassard, Claude Crépeau,
Asher Peres. Photo: André Berthiaume.
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can be used to teleport an unknown quantum state.

[Bennett et al. '93] | 3
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Quantum information 101

— Quantum systems are modeled by (finite-dimensional) Hilbert spaces H.

— A pure state is a normalized vector |¢Y) € H. [<¢| = (W»T]

— A mixed state is a probabilistic mixture > . pi|;) (| of pure states.

Alternatively, mixed states are linear PSD operators with unit trace.

— Composite quantum systems AB “live” on a tensor product space Ha ® Hp.
A (pure) state is entangled if it cannot be written as a product state.

| 5



Quantum information 102

— Maximally entangled state: |®1) 5 = \% (IMa® e+ Ha®|l)s)

OO = D@ + Q0O

— For bipartite states pag the marginal state is obtained by applying

the partial trace operation: Tr|

re(pag)Xal =

r[pAB(XA X ]15)] for all XA.

— [ he marginal states of the maximally entangled state are completely mixed:

Tradhs =31 = Trg dfp.

2

— Remember Charlie: "An entangled state describes the complete knowledge
of the whole without knowing the state of any one part."
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Standard teleportation protocol

ldea of teleportation: [Bennett et al. '93]
entanglement + classical channel = quantum channel

O entangled resource state O

/\ qubit to be /\
. teleported

Alice Bob

classical channel



Standard teleportation protocol

Steps: [Bennett et al. '93]

1) A
2) A

ice measures CA;.
Ice sends classical outcome | to Bob.

3) Bob applies correction operation U, to B.




Port-based teleportation

[Ishizaka, Hiroshima '08]
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Port-based teleportation

[Ishizaka, Hiroshima '08]
Steps: R

1) Measurement .\/\/\/\/\ ><
2) Classical comm:. ° l 3)
3) Correction :

O 1) : < Trl-c




Port-based teleportation

Z
) U
©,

Unitary covariance:
"Correction" (partial trace)
commutes with any unitary applied

to all of Bob's ports.

Initial state |¥)c is teleported to U|Y)c.

Caveat:
Protocol cannot be perfect for
finite resources. (N < o0)

[Nielsen, Chuang '97] | 12



Port-based teleportation

(/) Nevertheless, unitary covariance

enables following applications of PBT:

U — Universal programmable
quantum processors

— Attacks on position-based
cryptography

©

Quantum channel discrimination

|

Entanglement-assisted
quantum error correction?

[Ishizaka, Hiroshima '08; Beigi, Konig '11; Buhrman et al. '14; Pirandola et al. '19] | 13



Quantifying performance of PBT

Goal of PBT:

Approximate identity channel
C — B; = C’.

Let A: C — C’ denote the effective

e teleportation channel.

@ . Entanglement fidelity:

F(A) =Tr |95 (A®id) (©Fa)]

| 14



PBT and state discrimination

n Fundamental insight:

Teleporting C of &, through ports

IS equivalent to distinguishing states

ni = Nang, With uniform prior +:

N
F(/\) — E/Dsucc

—quivalence holds more generally for

arbitrary port states pavgn.

[Ishizaka, Hiroshima '08] | 15



Semidefinite programming

State discrimination problem: distinguish states n; with prior probabilities p;.

Primal problem P Dual problem D
N
Maximize: »  p; Tr(niE;) Minimize: Tr K
=1
subject to: E; > 0 for all 1, subject to: K > p;n; for all 1.
N
Y Ei=1.

=1

Strong duality: p,cc = P = D.



Semidefinite programming

State discrimination problem: distinguish states n; with prior probabilities p;.

Primal problem P Dual problem D
Minimize: Tr K
subject to: K > p;n; for all 1.

POVM: most general definition of
quantum measurement

m
|V
-
o
=
l

Strong duality: p,cc = P = D.



PBT and state discrimination

T

Port state: NN max. entangled states

PANBN — (q)i\_g)@/v

State discrimination problem:

1

pi:N

What 1s a good choice for the
POVM (measurement)?



Pretty good measurement

n, Define average state 11 = Z,/V:l pDiM;.

Measurement operators:

Ei =72 pmin Y3

‘\/\/\/\/\‘ Also called square root measurement.

—asy to check:
1) E; > 0 for all i;

2) > .. Ei =suppmn.
[Hausladen, Wootters '94] | 19
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Symmetries in state discrimination problem

Fundamental symmetry:

(U@ U*)|dT)ap = |®T) g for all unitaries U.

State ensemble: 1 . .
@ U®PN=1 invariance

ni=®ap @ (g1a)*" ! (U U*) |
- I

Invariance I I
Resulting symmetries: @ °0e
\

[U®N ® U~, ?7,'] =0

Sn_+1 Invariance
Tas @7, ] =0 (m € Sn_1) N=1 .,



Symmetries in state discrimination problem

Average ensemble state:
=0k 5 @ (21,)9N-1 4oy CD/_XNBN @ (31,4)®N1

(B; = B) U®N=1 invariance

(U® U") e

e L) () () e ()
. . o0 o
Resulting symmetries:

UV @ U*, 7| =0

[lg@m, 7]=0 (7we Sy) Sy invariance
22




Symmetries on tensor product spaces

Representation space (C?)®N. c? cv c? c“

ORORONO

Symmetric group Sy: ﬂ>$$<
ST Y1) @ .. Q| YN) = [Wr 1) @ .. @ Y1)
ONORONO,

Unitary group Uy u (U (U U
U D U: Y1) @ ... @ Yn) — Ul @ ... @ U lppn) '

oYoxoxe

T hese two representations commute and span each other's commutant.

— Schur-Weyl duality decomposes (C?)®N “nicely” into Sy and Uy, irreps.‘
23



Irreducible representations

Partitions u = (U1, ..., Uqg) g N

<— Young diagrams

Irreps of Sy Specht modules W,

Dimension: d, .= dmW,

rreps of Uy: Weyl modules V¢

Dimension: mgy,, == dim V/

N=12, d =4,
u=(5331)




Schur-Weyl duality

Sy and Uy span each other’'s commutants on (C9)®N, c? cv c? c“

Schur-Weyl decomposition: ﬂ>$$<
(€)M = €

B ie v, 0006

Application of Schur’s Lemma: Y

If state p on (C9)®N is invariant under Sy and Uy:

p= & r,1y,e®1y,,  wherer,>0and > r,mg,d, =1
g N g g N




Pieri rule

—nsemble states m; and average state 7 cd Ccd cd cd d

have U* @ U®N symmetry. @ @ @ @ @

| T
Incorporate U* @ U®N symmetry into >$$<

\
Schur-Weyl decomposition using Pieri rule: @ @ @ @ @
CHhyeVi= & Vi ur (U U |u (U

D> 41 v v v v v
Resulting block-diagonal form of 7: @ @ @ @ @

=@ @ salyoly, ()7 =CYe @ view,
pEgN a=p— . uFalV

26



Solving the state discrimination problem

Discriminate states 1, = @ o ® (514)®V~1 (with uniform prior).

Pretty good measurement: E; = 7~ 1/2m; 17/? with average state 1 = >_; m;.

N
Success probability: pcc Z p; Tr (Em;)

< \

N
L3 e (7m0
from Schur-Weyl 1_

2
and Pieri rulel NN > ( Z \/mdu )
OL|_d/\/ 1

[Studzinski et al. '17] | 27

Use symmetries (




Optimality of pretty good measurement

1

p
Success probability: po.c = ~ > ( > \/md,udp)
Nd aFqgN—1 N u=oa+

Optimality of PGM via SDP duality: psyec = min{Tr K: K > p;n; for all i}.

N
Show that Z 112 mn; 1% is dual feasible:

N
Z ni N2 nn 4 >, for all i For this choice:

Tr K = Psyce-
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Asymptotics of PBT performance

Entanglement fidelity: F(A)

|
Q
=
_|_
N
(]
H/‘\
(]
<
S
Q
T
tQ
——
)

Good: Beautiful closed formula in terms of representation-theoretic data.

Bad: Hard to tell what happens for large number of ports and

fixed local dimension.

Asymptotic limit: d > 2 fixed but arbitrary, N — oo

[Studzinski et al. '17] | 30



Schur-Weyl distribution and spectrum estimation

Recall Schur-Weyl duality: (C/)*N = @ VI @ W,

,ul—dN

Denote by P, the projection onto V¢ @ W,,.

Schur-Weyl distribution: py ()

Spectrum estimation:
Let X ~ pg n(), then

|

\

-
<V

\ .

[Alicki '88], [Keyl, Werner '01] | 31




Fluctuations of the Schur-Weyl distribution

Spectrum estimation:

1 N—)oo\ ( 1

Let X ~ pg n(1), then X > (5, ) in distribution.
Center and normalize YD's: / . U= \
Y= /8 (X (Y, ) — -
“Central limit theorem”: b= *
y 7 spec(G) in distribution, \ T . /

where G ~ GUEq(d) is drawn from the traceless Gaussian unitary ensemble.
[Alicki '88], [Keyl, Werner '01], [Johansson '01] | 32




Asymptotics of PBT performance

. N o
“Central limit theorem”: Y —> spec(G) in distribution.

1 2
Entanglement fidelity: F(\) = —— > ( T ¢md,udp,)
d aFqgN—1 N u=oa+

Idea: Rewrite fidelity as expectation value

F(N)= E [f(a)] for a suitable function f
aI—dN—l

and use CLT above to calculate with f(spec(G)) instead (much easier!).
33



Asymptotics of PBT performance

N— o0

“Central limit theorem”: Y > spec(G) in distribution.

Ent. fidel F(N\) = : My ,d T f

nt. fidelity: = ( ) — U a
d ( ) dN+2 al—dzlg—l u,——%:—k \/ S al—dN_]-[ ( )]

Need: Stronger convergence of expectation values for suitable functions f
— main technical result in [arXiv:1809.10751].

Main result: Asymptotic behavior of entanglement fidelity

d?—11

FIN =1- ——+

| O(N%*‘S) (hence F(A) — 1 as N — o)
34
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Fully optimized port-based teleportation

N maximally entangled states CIDj\‘B with pretty good measuremnet (optimall):

asymptotic behavior F =1 - O(N™1).

symmetrize
Better fidelity when optimizing
over entangled state pavgn? U
Yes, F=1—6O(N2). U -
02 U
Arbitrary PBT protocols: -
Can always assume Uy and Sy J B,

symmetries as discussed before.
[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751] | 36



Conclusion

Port-based teleportation: approximate teleportation scheme with
unitary covariance that enables interesting applications.

Natural symmetries enable characterization of performance using
tools from representation theory.

Asymptotics of PBT can be derived using interesting connection between
representation theory and random matrix theory.

Can we use these tools to analyze the asymptotic behavior of other
quantum-information theoretic tasks with similar symmetries?

Thank you for your attention! ‘
37



