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Multiple access channel

Simplest network communication scenario involving two senders and one receiver.

Each sender transmits individual

classical messages through

N

common channel to the receiver.
Sender 2
Receiver




Multiple access channel

MAC: conditional probability distribution N(z|a, b).
Random variables: (A, B) - Z

No communication between senders: input RVs A, B are independent.




Capacity region of a MAC

Sender 1 (2) tries to send information at rate R1 (R>).

(R1, Ry) is called achievable if receiver can decode

[ ] e [ ] R
the two messages with vanishing error. 2 L
capacity region

convex hull of all achievable (Ry, R>)

A

Multiple access channel R1

Typical capacity region



Locality & quantum correlations

The independence constraint for the two senders in the MAC scenario
can be interpreted as a locality constraint.

Bell inequalities: quantum correlations are strict superset of classical correlations.

Central questions in our work

Can entanglement assistance increase the capacity region of a MAC?
YES (and it can be complicated...)

How hard is it to compute the unassisted capacity region of a MAC?

NP-HARD



Talk outline

m Capacity region of a classical MAC and entanglement assistance

® Quantum correlations and non-local games

m Constructing a MAC in terms of a non-local game

® Main result 1: entanglement increases capacity region

® Main result 2: unbounded entanglement may be necessary

® Main result 3: computing the unassisted capacity region is NP-hard

®m Conclusion and open questions



Coding for a MAC

Encoding Channel transmission Decoding
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Capacity region of a MAC

Decoding error: £, = Pr((My, M,) # (M1, M,))
Rate tuple (R1, Ry) for R; = % log | M,| is called achievable if e, — 0 as n — oc.

Capacity region: C := cl ({(R1, Ry) achievable})

Single-letter capacity region of a MAC (Ahlswede '73, Liao '73)

Let A and B be RVs with product distribution p,(a)ps(b), and Z be a RV
defined by the MAC N. Then C is the convex hull of all (R, Ry) with

Ry < I(A;Z|B) R, < I(B;Z|A) Ri + R, < I(AB;Z).

Shannon entropy: Mutual information: Conditional mutual information:
H(X) = —>_ p(x)logp(x) I(X;Y) = H(X) + H(Y) — H(XY) I(X;Y|Z) =I(X;YZ) — I(X;2)



Typical capacity region of a MAC

Constraints for capacity region C:

Ri < I(A; Z

B)
A)

R1+ R2 < I(AB;2).

For fixed product distribution pspg

this region is pentagonal, since:

max{I(A: Z|B), I(B; Z|A)}

I(AB; Z)

R

I(B; Z|A) ‘

I(B;Z)

<
< I(A; Z|B) + I(B; Z|A)



Capacity region of a MAC

Ahlswede-Liao region characterized by single-letter formula.

Complicated part: product constraint (—independence constraint) on input RVs.

Queston2

Can we use entanglement assistance How hard is it to compute the full region?
to overcome independence constraint? Product constraint can be turned into
rank-1 constraint.
[Calvo et al., IEEE Trans. Comm. 58.12 (2010)]

We will study both questions using the theory of non-local games.

For simplicity: focus on the sum rate max{R; + R,: (R, Ry) € C(N)}.



Entanglement assistance for MACs

Senders share entangled state (/) and POVMs {I1;! },, and {I‘IZi}bZ:

P(a2, balar, by) = (¢|NZ @ M2 ).
Resulting correlation: E(a, blai, b1) = fi(alay, a2)f>(b|by, by)P(ay, bylaq, by).
Total MAC: M = No E
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Talk outline

]
® Quantum correlations and non-local games
]
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Non-local games

Referee Referee draws questions X;

X2 according to some distribution.

No communication allowed for

P, Alice and Bob to produce answers y;.

Alice Bob

Alice and Bob win if (xq,y1,X2,y2) € W.

Questions x; € X
Answers y; € ) Example: CHSH game

Winning condition W C A7 X &5 X V1 X ), Winning condition: y1 ® y, = x1 A X5
Non-local game G = (X, Vi, X, Vs, W).
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Non-local games: Classical strategies

Referee
X2

Y2
Alice Bob

Questions x; € X

Answers y; € Vi

Winning condition W C X; X &5, X V1 X Vs
Non-local game G = (X, Vi, X, Vs, W).

Deterministic strategy:
Deterministic functions f;: X; — V..

Probabilistic strategy:
Probabilistic mixture of

deterministic strategies.

Classical value w(G):

Maximal classical winning probability.

w(G) depends on distribution

on questions (x1, X2 ).
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Non-local games: Quantum strategies

Referee Quantum strategies:

X2 Alice and Bob share entangled state |().

Select POVMs {1}, <y, for each x; € &

(X1,%2) = (y1,¥2) w.p. (|7 @ N2{Y).

Alice ) Bob Quantum value w*(G):

[\/\/\/\/\) maximal qguantum winning probability.

Example: CHSH-game G

0.75 = w(G.) < w*(Gr) ~ 0.85
>0, > M= (Ge) (Gc)
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Magic square game

Alice is given a row.
Bob is given a column.
Both answer with strings of length 3.

They win, if:
m Alice's parity is even;
m Bob's parity is odd;
m strings agree in overlapping cell.

‘Mermin, PRL 65.27 (1990)]
Peres, Phys. Lett. A 151.3 (1990)]

15



Magic square game
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Magic square game

Alice is given a row.
Bob is given a column.
Both answer with strings of length 3.

They win, if:
m Alice's parity is even;
m Bob's parity is odd;
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MSG: Classical strategies

Perfect deterministic strategy

necessarily violates parity constraints.

Maximal winning probability: 8/9

For uniformly drawn questions,
this also holds for any
probabilistic strategy.

Classical value

w(Gus) = 8/9

[Brassard et al., Found. Phys. 35.11 (2005)]
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MSG: A perfect quantum strategy

Let Alice and Bob share two EPR pairs
(D) 4,8, |D)a,s,, and measure

the observables in their row/column.

Observables commute along

rows and columns.

Quantum value

w” (G/\/IS) =1

[Mermin, PRL 65.27 (1990)], [Peres, Phys. Lett. A 151.3 (1990)]
[Brassard et al., Found. Phys. 35.11 (2005)]

Parity constraints are always satisfied.
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Talk outline

m Constructing a MAC in terms of a non-local game
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MAC in terms of a non-local game

Let G = (X1, V1, X5, Vo, W) be a non-local game.
Inputs: question-answer pair (x;, y;) Output: question pair (X1, X;)

X1 X1 If (X17y17X27y2) c W,

Alice —I—>

then )A(,' = Xj.
| Y1 .
X1

Game strategy G

X2
It (X17y17X27y2) ¢ W;

then (X1, X») unif. random.

Inspired by [Quek & Shor, PRA 95.5 (2017)].

21



MAC in terms of a non-local game

Let G = (X1, V1, X5, Vo, W) be a non-local game.

5(;(17)(1)5(;(27)(2) it (X17y17X27y2) c W

NG (X1, X2|X1, Y1, X2,¥2) = 1
(| XL|| X))~ else.

Operational connection to the actual non-local game G:

Alice and Bob ask themselves x; independently, then produce y; using a game strategy.

TU(X1, Y1, X2, Y2) = T0(x1)7t(x2) T (Y1, V2 X1, X2)

Probabilistic strategies: Quantum strategies:

(Y1, Y2|X1,X2) = ZA mtafi(yilxa, A) f2(y2]x2, A) t(y1, Va|x1,%2) = <¢|n;1 & ”;ﬂl/i) 59



Talk outline

Capacity region of a classical MAC and entanglement assistance
Quantum correlations and non-local games

Constructing a MAC in terms of a non-local game

Main result 1: entanglement increases capacity region

Main result 2: unbounded entanglement may be necessary

Main result 3: computing the unassisted capacity region is NP-hard

Conclusion and open questions
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Sum rate of a non-local game MAC

Let G = (X1, V1, X5, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,y2) & W)} be the losing probability, and set Z = (X1, X,).

Then Ry 4+ Ry < I(X1Y1X3Y2;2Z) = H(Z) — p.(log | X1 | + log | X5)).

RHSis maximal when:

1) H(Z) = log | X1 | + log | X5|;

only possible with sampling x;

For a non-local game G with

uniformly at random! classical value w(G) < 1 players

cannot win on all questions!
2) p. = 0.
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Sum rate of a non-local game MAC

Let G = (X1, V1, X5, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,y2) & W)} be the losing probability, and set Z = (X1, X,).

Then Ry 4+ Ry < I(X1Y1X3Y2;2Z) = H(Z) — p.(log | X1 | + log | X5)).

Main result: No-Go theorem for classical strategies

For a non-local game with classical value w(G) < 1,

Ri+ Ry < log |X1| + log | X;].
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Sum rate of a non-local game MAC

Let G = (X1, V1, X5, Vo, W) be a non-local game and Ng the MAC derived from it.

Lemma

Let p, = Pr{(x1,y1,X2,y2) & W)} be the losing probability, and set Z = (X1, X,).

Then Ry 4+ Ry < I(X1Y1X3Y2;2Z) = H(Z) — p.(log | X1 | + log | X5)).

Main result: perfect sum rate with entanglement

If w*(G) = 1, then the perfect quantum strategy can be used to achieve
(R1,Ry) = (log |X1|, log | X5|) by drawing (x1, X, ) uniformly at random.

= R; + R, = log | X1 | + log |5
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Example: Magic square game channel

R, 1

1.5 |

0.5

approximation
to capacity region

\.\ (Iog3 log 3) “ \

achievable using
perfect quantum strategy

\ w*(Gys) =1

0.5 1

1.5

R1

Bound on
classical sum rate

w(Gys) = 8/9

| = [Xa] =3, [Dh| = D2 =8
log3 ~ 1.585
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Example: Magic square game channel

R, 1 |
"~ "true" separation
1.5 | .
1 |
0.5 ¢
5 l Separation from bound: 0.033
0 0.5 1 R, “True” separation: 0.328
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Talk outline

® Main result 2: unbounded entanglement may be necessary
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Linear system games

Given: Linear system of m equations Ax = b in n variables x; over I,.

Alice

Q: j-th equation
A: bit-values for all xi in A;
Referee Win if x; ¢ A; or answers consistent.
\A: bit-value for x;
Q: i-th variable
Bob

30



Unbounded entanglement needed

1 Gsy = (A, b) such that w*(Gsy) < 1 for any finite-dimensional entangled strategy.

C C w*(Gsy) < 1ford < o0
For MES with Schmidt rank d: = 2 = ( SV)
w*(Gsy) — 1ford — o

Main result: Unbounded entanglement

Any d-entangled strategy for the MAC Ng,, must have R; + R, < logm + logn.

There is an entangled strategy such that R{ + R, — logm + logn as d — oo.

For the family of all linear system games, it is undecidable whether

(log m, log n) can be achieved for the corresponding family of MACs.

[Slofstra and Vidick, Ann. H. Poincare 19.10 (2018)], [Slofstra, Forum Math. Pi 7 (2019)] 31



Talk outline

® Main result 3: computing the unassisted capacity region is NP-hard
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A non-local game version of 3-SAT

Given: Booleanvariablesx;, ..., x,and Cq, ..., C, clauses containing exactly 3 literals,

Alice e.g.Ci=x2 Vx4 V Xs.

Q: j-th clau/
A: assighments for x;,, X;,, X, in C;

Referee Win if x; ¢ C; or answers consistent.

\A: assignment for x;
Q: i-th variz&

Bob [Hastad, J. ACM 48.4 (2001)] 33



NP-hardness of computing capacity region

PCP Theorem: It is NP-hard to decide for Hastad’s game G, with m = O(n)
whether w(Gy) = 1lor w(Gy) <1 — (1 —c)/nforsomec < 1.

Main result: NP-hardness of computing unassisted capacity region

For MAC Ng,,, it is NP-hard to decide whether R; + R, = logm + logn
can be achieved or Ry + R, < logm + logn — ((1 —¢)/n)’.

For a point-to-point channel with O(n) bit inputs, we can approximate capacity

to precision O(n—3) in time O(n> log n) using Blahut-Arimoto algorithm.
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Conclusion

MAC models simple network communication scenario with 2 senders, 1 receiver.

Capacity region given by single-letter formula, but non-convex problem.

m Entanglement between senders can boost capacity region of a MAC.

B You may need lots of entanglement to get full boost.
m This is generally undecidable.
m The classical capacity region is NP-hard to compute.

All results are proven by embedding a non-local game in a MAC scenario.
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Open questions

Information-theoretic Optimization-theoretic
B Can we improve sum rate bound B Efficiently computable outer
to get "true" separation? bounds for capacity region of MAC?
B Formula for the entanglement- B Efficient optimization over
assisted capacity region? (bilinear) quantum strategies?
B What about arbitrary (three-way) B Can entanglement boost the
entanglement assistance? capacity of arbitrary MACs?
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Thank you

for your attention!
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