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Operational interpretation: Binary hypothesis testing

» In general: Trade-off between these errors.

» One possibility: Try to minimize both at the same time

— symmetric hypothesis testing, Chernoff bound

» Another one:

minimize type-Il error s.t. type-l error < €

» Optimal exponent in the limit n — oo given by Dy, (P||Q):

type-Il error ~ exp(—nDy (P||Q)) for large n.
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KL-divergence satisfies the data processing inequality (DPI):

» Let Py, Qx be probability distributions on X, and let

Myx: X — Y € X be a classical channel.

» Denote by Py, Qy the resulting distributions, that is,
Py(x) = > _,cx Px(2)[yx(z|x) and similar for Qy.

» Data processing inequality:

Dyi(Px||Qx) > Dy (Py||Qy)

» Consequence: Transformations 'yx make it harder to

discriminate between Py and Qy.
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Motivation: Kullback-Leibler divergence

Importance of data processing inequality
Dx.(Px||Qx) > Dy (Pyl|Qy)

» Phrase an information-theoretic task in terms of
transformations (e.g. encoding, decoding, ...).

» Characterize the task by entropic quantities based on
relative entropies such as Dy (+||-).

» Data processing inequality then allows us to derive
bounds on the optimal rate of the task.

» Same principle in Classical and Quantum Information

Theory!
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How do we "make things quantum"?
» Replace the discrete probability space X’ by a Hilbert
space H of dimension |X| < oo (that is, H =2 CI¥),
» Density operator (or mixed state) is an operator p acting
on H thatis
positive: p > 0 (thatis, (¢|p|g) > Oforall |¢) € H)
normalized: Trp =1
» Eigenvalues of a density matrix form a probability
distribution!
» However, for a unitary U the operators p and UpU' have

the same eigenvalues.
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» Interpretation: Assume that the pure state of a system is
described by a normalized (column) vector |¢) € H.
» Mixed state p = > . p;|¢);) ({;| describes a system that is
in the pure state ¢, with probability p;.
(in general, [;) L |g;) fori # j)
» Spectral decomposition of p:
p= Zi)l,-|e,-><e,-| with (e;|e;) = &;
where |e;) is an eigenvector of p with eigenvalue A; > 0.

» "Quantumness": In general, [p, d] # O for two states p,0,

that is, p and o have different eigenbases.
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A bit more abstract:

» Density operators correspond to positive, normalized
elements of the C*-algebra 3(#) of linear bounded

operators acting on a Hilbert space H (for us dim H < o0).
» The x-map is given by the adjoint ': A — Af, and

|ATA|| = ||A||> where || - || is the operator norm.
» Note that A > 0 = AT = A (pos. elements are Hermitian).

» We equip B(H) with the Hilbert-Schmidt inner product:
(X,Y) = Tr(x'Y)
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» A quantum channel (or quantum operation) is a map
N: B(H) — B(K) thatis
trace-preserving (TP): Tr(A(X)) = Tr X for all X € B(H).
completely positive (CP): The map

A®idp: B(H) ® Mp(C) — B(K) @ Mp(C)
is positive for alln € N. (X>0=A®idy(X) > 0)
» Define the adjoint map AT: B(K) — B(H) through
(NT(Y),X) = (Y,A(X)) forallX € B(H),Y < B(K).

» Then Ais TP iff AT is unital, i.e. AT(1) = 1.
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for arbitrary X € B(H.1), Y € B(H.,).
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Importance of partial trace

Stinespring's representation theorem [Stinespring 1955]:
Let A: B(#H) — B(K) be a quantum channel, then there
is an isometry V: H — K @ K’ s.t. A(X) = Tro(VXV1).

(Every quantum ch. looks like the partial trace in some space.)

Purification: Let p € B(#) be a mixed state, then there is
a Hilbert space H' (we may take dimH’ = dim %) and a
pure state |)) € H @ H' such that p = Tr, [¢) (Y.

(Every state looks like a pure state in some space.)
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Operators and functional calculus
» WewriteA > BifA—B>0.
> Let A > 0 with spectral decomposition A = ). Aj|e;) (eil,
and let f: RT — R, then we define f(A) =Y. f(A;)|e;) (ei].
» fis operator monotone: A > Bimplies f(A) > f(B).
» fis operator convex: For A € (0,1) and A;, A, >0,
f(AAL + (1 = A)A;) < AM(A1) + (1 — A)f(Ay)
» Jensen's operator inequality: fis operator convex iff
f(VIAV) < VIf(A)V

forall A > 0and Vwith ||V| < 1.
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Let X,Y € B(H), X, Y > 0 with supp X C supp Y, then
D(X||Y) = Tr[X(log X — log Y)]
Properties:

» If Xand Y are states, then D(X||Y) > 0,and = 0iff X = V.

» Correct quantum generalization of KL-divergence:

> D(P||Q) = Dx.(P||Q) for classical states

P= PO Q=">_akx.
xeX xeX
> error exponent in quantum hypothesis testing

(just as Dg (+]|-) in classical hyp. testing)
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» Let ®: B(H) — B(K) be TP and 2-positive map.
2-positive: For A; € B(#H),i=1,...,4 we have

O(A1) ®(A2) -0 i A1 A -0
D(A3) O(A1)] A As)

» Then D(-||-) satisfies the data processing inequality
D(X][Y) = D(®(X)|[®(Y)).
» This holds in particular for every CPTP map A.
Recall: ® CP ;< @ is n-positive for all n

» Recent result: DPI holds for every positive map.

[Mdller-Hermes and Reeb 2015]
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X,Y € B(H) be invertible density operators. Then we have

D(X][Y) = D(®(X)[|®(Y))
ifand only if forallt € R
of (OX)" D(Y)") = X"y ™.
Remark: Assumption of invertible X, Y can be relaxed to

supp X C suppY.
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D(X||Y) = D(®(X)||®(Y)) if and only if
O (DX)"D(Y)™) = X'y forallt € R.
» Algebraic condition on map and operators.
» Equivalent formulation: There exists a recovery map
Roy() = Yl/ZG)T(CD(Y)_l/Z . (D(Y)—l/Z) yl/2
such that Re v(D(X)) = Xand Ry (D(Y)) = V.
» Royrecovers X, Y by reverting the action of ®.

» Recoveryon X:

X — Yl/Z(DT(q)(y)—l/ZcD(X)cD(Y)—l/Z) Y1/2
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Proof of the main theorem

» We first analyze a proof of the data processing inequality

via relative modular operators.

» Consider the multiplication operators L,(T) := AT and
Rs(T) = TB, satisfying

> LAORB :RBOLA.
> Ly-1 = L;l if A is invertible, likewise for Rg.
> La, Rg are self-adjoint, and positive if A, B > 0.

> For analyticf: RT™ — R we have f(Ly) = Ly(a) and likewise
for Rgif A,B > 0.
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Proof of the main theorem

» Define the relative modular operator Ayy = Ly o Ry-1.
» Thenlog Ay)x = Liogy — Riogx, and
D(X||Y) = TriX(log X — log ¥)] = —(X*/2, log Ayx(X*/?)).
» Assume now that @(X) is also invertible, and set
A = Ay Do = Do(n)ow)
such that
D(X[|Y) = —(X*/2,log A(X*?))
D(OX)[®(Y)) = —(®(X)*2, log bo(D(X)"/?)).
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Proof of the main theorem
» Consider the integral representation
>~ 1 1
Iogx:/ — = dt
o 14+t x+t
» We can then write

m&wyzlma”{m+¢r%%“»—(L+0*dt

D(O(X)[B(Y)) = / T 0002, (B0 + 1) H(OX)H2)
—(1+t) " dt

and focus on the integrands written in terms of the

resolvents (A(g) +t) .
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V(A) = O (AD(X)V/2) X2,
» O is unital: V(D(X)¥/2) = OT(1)xY/2 = x*/2.
» Visa contraction: |[|[V(A)||* < ||A]| for all A.

» To show this, use the Schwarz inequality
Of(ATA) > Of (A DT(A).
2-positive TP maps largest class of maps for which Sl holds!
» Vrelates the two modular operators:
VIAV < Ag,

again by application of the Schwarz inequality.

26/43



Proof of the main theorem

» Visa contraction, and VIAV < Ag.

27/43



Proof of the main theorem

» Visa contraction, and VIAV < Ag.
» y+ (y +t)"lis operator monotone (decreasing) and
operator convex:
(Do +t) P < (VIAV+ )T < ViI(A+ 1)tV

(second < follows from Jensen's operator inequality)

27/43



Proof of the main theorem

» Visa contraction, and VIAV < Ag.
» y+ (y +t)"lis operator monotone (decreasing) and

operator convex:
(Do +t) P < (VIAV+ )T < ViI(A+ 1)tV
(second < follows from Jensen's operator inequality)

» Hence:
(X2, (8 + 1) (X)) = (VO(X)'2, (8 + 1) /2V(D(X)Y?))
= (O(X)2, VI(2 + ) /2V(D(X)*?))
> (O(X)'/%, (Bg + 1) H(D(X)?)).
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» Recall integral representations:
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» Recall integral representations:

D(X||Y) = /Ooo<x1/2, (A+t)71 (X)) — (1 + 1) dt

D(oX)[|o(Y)) = /OOO@(X)”Z, (8o + 1) 7H(@(X)"?))
—(14t)dt
» Just proved:
X2, (8 + 7)) > (O(X)Y2, (80 + 1) THO(X)'?)).
» Insert this in the integral representations:

D(X||Y) = D(O(X)[|®(Y))
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» Equality in DPIif and only if forall t > 0
(@)Y, VI + 6)TV(O(X)?)
= (O(X)2, (80 + 1) H(O(X)"?)).
» LetA > B, then (v|A|v) = (v|B|v) implies A|v) = B|v).
» Hence, VI(A +t)TV(DO(X)Y?) = (bg + t) L (D(X)Y2).
» It follows by an easy calculation that
IVI(a -+ )27 = [Vi(a + 5 V(@(X) )1

= [I(a + &) (x2)|.
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Proof of the main theorem
> [VI(A+6) 1 (X)) = [I[(B+£) 1 (X)),

> If |WT|€)||2 = |||€)]|? for an arbitrary contraction W, then
wwhig) = |§)

» Recall: V(A +t)73(XY2) = (Ag + t)H(D(X)Y/?)
> Then: V(A + 1) H(D(X)Y/2) = (A + t)"1(XV/2).

» That s, the resolvents of Ap and A coincide on the vectors

®(X)*/2 and X*/2, respectively (modulo V).
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Proof of the main theorem

» The resolvent of an operator O determines the projections
onto the eigenspaces of O.
» Hence, for every polynomial p we have

Vo(80)(®(X)?) = p(8)(X"/?).

» Stone-Weierstrass approximation theorem: polynomials

are dense in the space of continuous functions

» Hence, for every continuous f we have

VA(80)(®(X)1/2) = (B)(X'/?).
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> V(Do) (D(X)H2) = f(8)(X*/?) for all continuous f.
» Choose f(x) = x", then
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» Choose f(x) = x", then
VA (O()*7) = 8*(x?)
& V(O(Y) OX) tD(X)Y?) = vix X2
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Proof of the main theorem

> V(Do) (D(X)H2) = f(8)(X*/?) for all continuous f.
» Choose f(x) = x", then
VBS(O(X)!17) = a(x01%)

& V(O(Y) O(X) D (X)Y/?) = vixtxt/?

& ON(D(Y)TD(X) " )XY? = yitxtxl/2
& ON(O(YV)'OX) ™) = yix !
& OI(OX) ' O(Y) ") = X"y "

The last line follows from taking the adjoint and using the fact

that A(A)T = A(AT) for a positive map A.
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Proof of the main theorem

» Proven so far:
D(X||Y) = D(®(X)[|®(Y))
— of(OX) (V) ™) = Xty forallt> 0.
» To prove sufficiency of O (O(X)*®(Y)~) = xty*,
differentiate thisatt = 0:

' (log ®(X) — log ®(Y)) = log X — log Y

» Using the definition of ®T, this implies equality in the data

processing inequality.
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von Neumann entropy

For a state p define the von Neumann entropy
S(p) = —Trplogp = —D(p||1).

» S(p) = H({A;};) where A; are the eigenvalues of p and
H({pi}i) = — >_, pilog p; is the Shannon entropy.
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von Neumann entropy

For a state p define the von Neumann entropy
S(p) = —Trplogp = —D(p||1).

» S(p) = H({A;};) where A; are the eigenvalues of p and
H({pi}i) = — >_, pilog p; is the Shannon entropy.

» 0 < S(p) < logdim # for all states p on H.

» Additivity: S(p ® o) = S(p) + S(0)

» Subadditivity: Let p,; be a state on a bipartite system
Hy @ Hgand set p, = Trgpag and pg = Try pyg. Then,

S(Pas) < S(pa) + S(ps)-
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Strong subadditivity of von Neumann entropy

Strong subadditivity [Lieb and Ruskai 1973]:

» Let p g be a tripartite state, and denote by p,g, Psc, P5

the corresponding marginals. Then:

S(Pasc) +S(ps) < S(Pas) + S(Psc)-
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I(A; C|B), = S(AB) + S(BC) — S(B) — S(ABC)
where S(AB) = S(p,z) etc.
» Definition of qCMI analogous to classical quantity!
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Strong subadditivity:
S(Pasc) +S(Ps) < S(pas) + S(Psc)

» Highly non-trivial statement!
» However, easy proof using data processing inequality:
S(pa) + S(Psc) — S(Pasc) = D(Pascllpa @ psc)
> D(pasllpa @ pg)
= S(pa) + S(Ps) — S(Pas)
» What happens if we have equality in SSA?

» By the above: equality in SSA < I(A; C|B) = 0
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Strong subadditivity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

» We applied DPI with respect to partial trace over C.

» Equality condition (recovery map formulation):

There is a recovery map Rp_pc: B(Hs) — B(Hsc) s-t.
Rs-8c(Pas) = Pasc Re—c(0a8) = Ousc
» Hence, we obtain:

I(A;C|B), =0 <= JRp_pc With pgc = Rp_ac(Pg)

» Thatis, A <+ B <+ C forms a (short) quantum Markov

chain iff we can recover C from B alone.
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Conclusion and open problems

Summary:
» Divergences (or relative entropies) play an important role
in Classical and Quantum Information Theory.

» Their crucial property is the data processing inequality.

» The quantum relative entropy is an important example in

Quantum Information Theory.
» We derived an equality condition in the DPI for the
guantum relative entropy.

» We saw how this gives rise to the notion of quantum

Markov chains.
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Conclusion and open problems

Generalized divergence:

» Crucial property of a divergence: DPI

» Popular other choices: Rényi divergences

D.(p||o) = log Tr(p%c' %) a € [0,2]

a—1

D.(p|lo) = log Tr (04=9/22pg(1=a)/22)% 4 ¢ [1/2, 00)

a—1
> lim,_,1 Da(p]lo) = D(p||o) = lims_1 Da(p]0).

» Both satisfy DPI in the given range.
[Petz 1986; Frank and Lieb 2013; Beigi 2013]
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» o-Rényi divergence:

Da(pllo) =

o, l1—a

log Tr(p%o™ %)

a—1
» Equality conditions: Same as for D(p||o)! [Hiai et al. 2011]

O (DX D(V)™") =XV forallt e R.
» a-sandwiched Rényi divergence:
506(9”0) = 1 log Tr (0(1—“)/2ap0(1—a)/2a>“
a —_

[Muller-Lennert et al. 2013; Wilde et al. 2014]
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Conclusion and open problems

» o-Rényi divergence:

Da(pllo) =

log Tr(p%c* ™

o1 'oeTr(e )

» Equality conditions: Same as for D(p||o)! [Hiai et al. 2011]
O (OX)*®(Y)™) = X'y forallt € R.

» oa-sandwiched Rényi divergence:

Ba(PHU) P log Tr (0(1—“)/2ap0(1—a)/2a>“

[Muller-Lennert et al. 2013; Wilde et al. 2014]

» Equality conditions? [FL, Rouzé, Datta]
— CQIF seminar, Fri, February 26, 12.00 (MR12)!
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