Equality condition in the

data processing inequality for the quantum relative entropy

Felix Leditzky

CAKE Seminar
17 February 2016

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Motivation: Kullback-Leibler divergence

Let P, Q be probability distributions on a discrete probability space \mathcal{X}, and define the Kullback-Leibler divergence $D_{\mathrm{KL}}(P \| Q)$:

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}
$$

This relative entropy is a premetric:

$$
D_{\mathrm{KL}}(P \| Q) \geq 0 \quad \text { and } \quad D_{\mathrm{KL}}(P \| Q)=0 \text { iff } P=Q
$$

Motivation: Kullback-Leibler divergence

Let P, Q be probability distributions on a discrete probability space \mathcal{X}, and define the Kullback-Leibler divergence $D_{\mathrm{KL}}(P \| Q)$:

$$
D_{\mathrm{KL}}(P \| Q):=\sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}
$$

This relative entropy is a premetric:

$$
D_{\mathrm{KL}}(P \| Q) \geq 0 \quad \text { and } \quad D_{\mathrm{KL}}(P \| Q)=0 \text { iff } P=Q
$$

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- Assume that we are given n independent and identically distributed (i.i.d.) copies of one of two probability distributions P or Q.
- Goal: Determine whether we have P (null hypothesis H_{P})
or Q (alternative hynothesis H_{a}).
- Two possible errors:

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- Assume that we are given n independent and identically distributed (i.i.d.) copies of one of two probability distributions P or Q.
- Goal: Determine whether we have P (null hypothesis H_{P}) or Q (alternative hypothesis H_{Q}).
- Two possible errors:

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- Assume that we are given n independent and identically distributed (i.i.d.) copies of one of two probability distributions P or Q.
- Goal: Determine whether we have P (null hypothesis H_{P}) or Q (alternative hypothesis H_{Q}).
- Two possible errors:

$$
\begin{aligned}
& \text { Type-I error: We falsely reject } H_{P} \text {. } \\
& \text { Type-II error: We falsely accept } H_{p} \text {. }
\end{aligned}
$$

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- Assume that we are given n independent and identically distributed (i.i.d.) copies of one of two probability distributions P or Q.
- Goal: Determine whether we have P (null hypothesis H_{P}) or Q (alternative hypothesis H_{Q}).
- Two possible errors:
\triangleright Type-I error: We falsely reject H_{p}.
Type-II error: We falsely accept H_{p}.

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- Assume that we are given n independent and identically distributed (i.i.d.) copies of one of two probability distributions P or Q.
- Goal: Determine whether we have P (null hypothesis H_{P}) or Q (alternative hypothesis H_{Q}).
- Two possible errors:
\triangleright Type-I error: We falsely reject H_{p}.
\triangleright Type-II error: We falsely accept H_{p}.

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- In general: Trade-off between these errors.

One possibility: Try to minimize both at the same time
\longrightarrow symmetric hypothesis testing, Chernoff bound

- Another one:
minimize type-II error s.t. type-I error $\leq \epsilon$
- Optimal exponent in the limit $n \rightarrow \infty$ given by $D_{\text {KL }}(P \| Q)$:

$$
\text { type-ll error } \approx \exp \left(-n D_{K L}(P \| Q)\right) \text { forlarge } n \text {. }
$$

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- In general: Trade-off between these errors.
- One possibility: Try to minimize both at the same time
\longrightarrow symmetric hypothesis testing, Chernoff bound
- Another one:
minimize type-II error s.t. type-I error $\leq \epsilon$
- Optimal exponent in the limit $n \rightarrow \infty$ given by $D_{\text {KL }}(P \| Q)$:

$$
\text { type-ll error } \approx \exp \left(-n D_{K L}(P \| Q)\right) \text { for large } n \text {. }
$$

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- In general: Trade-off between these errors.
- One possibility: Try to minimize both at the same time
\longrightarrow symmetric hypothesis testing, Chernoff bound
- Another one:
minimize type-II error s.t. type-I error $\leq \epsilon$
- Optimal exponent in the limit $n \rightarrow \infty$ given by $D_{\text {KL }}(P \| Q)$: type-ll error $\approx \exp \left(-n D_{K L}(P \| Q)\right)$ for large n.

Motivation: Kullback-Leibler divergence

Operational interpretation: Binary hypothesis testing

- In general: Trade-off between these errors.
- One possibility: Try to minimize both at the same time
\longrightarrow symmetric hypothesis testing, Chernoff bound
- Another one:

$$
\text { minimize type-II error s.t. type-I error } \leq \epsilon
$$

- Optimal exponent in the limit $n \rightarrow \infty$ given by $D_{\text {KL }}(P \| Q)$:

$$
\text { type-II error } \approx \exp \left(-n D_{\text {KL }}(P \| Q)\right) \text { for large } n .
$$

Motivation: Kullback-Leibler divergence

KL-divergence satisfies the data processing inequality (DPI):

- Let P_{X}, Q_{X} be probability distributions on \mathcal{X}, and let $\Gamma_{Y \mid X}: X \rightarrow Y \in \mathcal{X}$ be a classical channel.
\Rightarrow Denote by P_{γ}, Q_{γ} the resulting distributions, that is, $P_{Y}(x):=\sum_{z \in \mathcal{X}} P_{X}(z) \Gamma_{Y \mid X}(z \mid x)$ and similar for Q_{Y}.
- Data processing inequality:

$$
D_{\text {KL }}\left(P_{X} \| Q_{X}\right) \geq D_{\text {KL }}\left(P_{Y} \| Q_{Y}\right)
$$

- Consequence: Transformations $\Gamma_{Y \mid X}$ make it harder to
discriminate between P_{x} and Q_{x}.

Motivation: Kullback-Leibler divergence

KL-divergence satisfies the data processing inequality (DPI):

- Let P_{X}, Q_{X} be probability distributions on \mathcal{X}, and let $\Gamma_{Y \mid X}: X \rightarrow Y \in \mathcal{X}$ be a classical channel.
- Denote by P_{Y}, Q_{Y} the resulting distributions, that is, $P_{Y}(x):=\sum_{z \in \mathcal{X}} P_{X}(z) \Gamma_{Y \mid X}(z \mid x)$ and similar for Q_{Y}.
- Data processing inequality:

$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Consequence: Transformations $\Gamma_{Y \mid X}$ make it harder to discriminate between P_{x} and Q_{x}.

Motivation: Kullback-Leibler divergence

KL-divergence satisfies the data processing inequality (DPI):

- Let P_{x}, Q_{X} be probability distributions on \mathcal{X}, and let $\Gamma_{Y \mid X}: X \rightarrow Y \in \mathcal{X}$ be a classical channel.
- Denote by P_{Y}, Q_{Y} the resulting distributions, that is, $P_{Y}(x):=\sum_{z \in \mathcal{X}} P_{X}(z) \Gamma_{Y \mid X}(z \mid x)$ and similar for Q_{Y}.
- Data processing inequality:

$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Consequence: Transformations $\Gamma_{Y \mid X}$ make it harder to
discriminate between P_{x} and Q_{x}.

Motivation: Kullback-Leibler divergence

KL-divergence satisfies the data processing inequality (DPI):

- Let P_{x}, Q_{X} be probability distributions on \mathcal{X}, and let $\Gamma_{Y \mid X}: X \rightarrow Y \in \mathcal{X}$ be a classical channel.
- Denote by P_{Y}, Q_{Y} the resulting distributions, that is, $P_{Y}(x):=\sum_{z \in \mathcal{X}} P_{X}(z) \Gamma_{Y \mid X}(z \mid x)$ and similar for Q_{Y}.
- Data processing inequality:

$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Consequence: Transformations $\Gamma_{Y \mid X}$ make it harder to discriminate between P_{X} and Q_{X}.

Motivation: Kullback-Leibler divergence

 Importance of data processing inequality$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Phrase an information-theoretic task in terms of transformations (e.g. encoding, decoding, ...).
- Characterize the task by entropic quantities based on relative entropies such as $D_{\text {KL }}(\cdot \| \cdot)$.
- Data processing inequality then allows us to derive bounds on the optimal rate of the task.
- Same principle in Classical and Quantum Information

Theory!

Motivation: Kullback-Leibler divergence

 Importance of data processing inequality$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Phrase an information-theoretic task in terms of transformations (e.g. encoding, decoding, ...).
- Characterize the task by entropic quantities based on relative entropies such as $D_{\mathrm{KL}}(\cdot \| \cdot)$.
- Data processing inequality then allows us to derive bounds on the optimal rate of the task. - Same principle in Classical and Quantum Information Theory!

Motivation: Kullback-Leibler divergence

Importance of data processing inequality

$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Phrase an information-theoretic task in terms of
transformations (e.g. encoding, decoding, ...).
- Characterize the task by entropic quantities based on relative entropies such as $D_{\text {KL }}(\cdot \| \cdot)$.
- Data processing inequality then allows us to derive bounds on the optimal rate of the task.
- Same principle in Classical and Quantum Information

Theory!

Motivation: Kullback-Leibler divergence

Importance of data processing inequality

$$
D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right) \geq D_{\mathrm{KL}}\left(P_{Y} \| Q_{Y}\right)
$$

- Phrase an information-theoretic task in terms of
transformations (e.g. encoding, decoding, ...).
- Characterize the task by entropic quantities based on relative entropies such as $D_{\text {KL }}(\cdot \| \cdot)$.
- Data processing inequality then allows us to derive bounds on the optimal rate of the task.
- Same principle in Classical and Quantum Information Theory!

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$). Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is
- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators ρ and $U \rho U^{\dagger}$ have the same eigenvalues.

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$).
- Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is

1 positive: $\rho \geq 0$
2 normalized: $\operatorname{Tr} \rho=1$

- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators ρ and $U \rho U^{\dagger}$ have the same eigenvalues.

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$).
- Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is

1 positive: $\rho \geq 0 \quad$ (that is, $\langle\psi| \rho|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$)
2 normalized: $\operatorname{Tr} \rho=1$

- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators ρ and $U \rho U^{\dagger}$ have
the same eigenvalues.

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$).
- Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is

1 positive: $\rho \geq 0 \quad$ (that is, $\langle\psi| \rho|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$)
2 normalized: $\operatorname{Tr} \rho=1$

- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators p and $U p U^{\dagger}$ have the same eigenvalues.

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$).
- Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is

1 positive: $\rho \geq 0 \quad$ (that is, $\langle\psi| \rho|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$)
2 normalized: $\operatorname{Tr} \rho=1$

- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators ρ and $U \rho U^{\dagger}$ have the same eigenvalues.

Mathematics of Quantum Mechanics 101

How do we "make things quantum"?

- Replace the discrete probability space \mathcal{X} by a Hilbert space \mathcal{H} of dimension $|\mathcal{X}|<\infty$ (that is, $\mathcal{H} \cong \mathbb{C}^{|\mathcal{X}|}$).
- Density operator (or mixed state) is an operator ρ acting on \mathcal{H} that is

1 positive: $\rho \geq 0 \quad$ (that is, $\langle\psi| \rho|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$)
2 normalized: $\operatorname{Tr} \rho=1$

- Eigenvalues of a density matrix form a probability distribution!
- However, for a unitary U the operators ρ and $U \rho U^{\dagger}$ have the same eigenvalues.

Mathematics of Quantum Mechanics 101

- Interpretation: Assume that the pure state of a system is described by a normalized (column) vector $|\psi\rangle \in \mathcal{H}$.
\Rightarrow Mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ describes a system that is in the pure state ψ_{i} with probability p_{i}. (in general, $\left|\mu_{i}\right\rangle$ \& $\left|\mu_{j}\right\rangle$ for $i \neq j$
- Spectral decomposition of ρ :

$$
\rho=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { with }\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
$$

where $\left|e_{i}\right\rangle$ is an eigenvector of ρ with eigenvalue $\lambda_{i} \geq 0$.

- "Quantumness": In general, $[\rho, \sigma] \neq 0$ for two states ρ, σ,
that is, ρ and σ have different eigenbases.

Mathematics of Quantum Mechanics 101

- Interpretation: Assume that the pure state of a system is described by a normalized (column) vector $|\psi\rangle \in \mathcal{H}$.
- Mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ describes a system that is in the pure state ψ_{i} with probability p_{i}.
(in general, $\left|\psi_{i}\right\rangle \not \perp\left|\psi_{j}\right\rangle$ for $i \neq j$)
- Spectral decomposition of ρ :

$$
\rho=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { with }\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
$$

where $\left|e_{i}\right\rangle$ is an eigenvector of ρ with eigenvalue $\lambda_{i} \geq 0$.

- "Quantumness": In general, $[\rho, \sigma] \neq 0$ for two states ρ, σ, that is, ρ and σ have different eigenbases.

Mathematics of Quantum Mechanics 101

- Interpretation: Assume that the pure state of a system is described by a normalized (column) vector $|\psi\rangle \in \mathcal{H}$.
- Mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ describes a system that is in the pure state ψ_{i} with probability p_{i}.
(in general, $\left|\psi_{i}\right\rangle \not \perp\left|\psi_{j}\right\rangle$ for $i \neq j$)
- Spectral decomposition of ρ :

$$
\rho=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { with }\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
$$

where $\left|e_{i}\right\rangle$ is an eigenvector of ρ with eigenvalue $\lambda_{i} \geq 0$.
> "Quantumness": In general, $[\rho, \sigma] \neq 0$ for two states ρ, σ, that is, ρ and σ have different eigenbases.

Mathematics of Quantum Mechanics 101

- Interpretation: Assume that the pure state of a system is described by a normalized (column) vector $|\psi\rangle \in \mathcal{H}$.
- Mixed state $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ describes a system that is in the pure state ψ_{i} with probability p_{i}.
(in general, $\left|\psi_{i}\right\rangle \not \perp\left|\psi_{j}\right\rangle$ for $i \neq j$)
- Spectral decomposition of ρ :

$$
\rho=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { with }\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
$$

where $\left|e_{i}\right\rangle$ is an eigenvector of ρ with eigenvalue $\lambda_{i} \geq 0$.

- "Quantumness": In general, $[\rho, \sigma] \neq 0$ for two states ρ, σ, that is, ρ and σ have different eigenbases.

Mathematics of Quantum Mechanics 101

A bit more abstract:

- Density operators correspond to positive, normalized elements of the C^{*}-algebra $\mathcal{B}(\mathcal{H})$ of linear bounded operators acting on a Hilbert space \mathcal{H} (for us $\operatorname{dim} \mathcal{H}<\infty$).
\Rightarrow The $*-$ map is given by the adjoint ${ }^{\dagger}: A \mapsto A^{\dagger}$, and $\left\|A^{\dagger} A\right\|=\|A\|^{2}$ where $\|\cdot\|$ is the operator norm.
- Note that $\Lambda \geq 0 \Rightarrow \Lambda^{\dagger}=\Lambda$ (pos. elements are Hermitian). - We equip $\mathcal{B}(\mathcal{H})$ with the Hilbert-Schmidt inner product:

$$
\langle X, Y\rangle:=\operatorname{Tr}\left(X^{\dagger} Y\right)
$$

Mathematics of Quantum Mechanics 101

A bit more abstract:

- Density operators correspond to positive, normalized elements of the C^{*}-algebra $\mathcal{B}(\mathcal{H})$ of linear bounded operators acting on a Hilbert space \mathcal{H} (for us $\operatorname{dim} \mathcal{H}<\infty$).
- The $*$-map is given by the adjoint ${ }^{\dagger}: A \mapsto A^{\dagger}$, and $\left\|A^{\dagger} A\right\|=\|A\|^{2}$ where $\|\cdot\|$ is the operator norm.
\Rightarrow Note that $A \geq 0 \Rightarrow A^{\dagger}=A$ (pos. elements are Hermitian). - We equip $\mathcal{B}(\mathcal{H})$ with the Hilbert-Schmidt inner product:

Mathematics of Quantum Mechanics 101

A bit more abstract:

- Density operators correspond to positive, normalized elements of the C^{*}-algebra $\mathcal{B}(\mathcal{H})$ of linear bounded operators acting on a Hilbert space \mathcal{H} (for us $\operatorname{dim} \mathcal{H}<\infty$).
- The $*$-map is given by the adjoint ${ }^{\dagger}: A \mapsto A^{\dagger}$, and $\left\|A^{\dagger} A\right\|=\|A\|^{2}$ where $\|\cdot\|$ is the operator norm.
- Note that $A \geq 0 \Rightarrow A^{\dagger}=A$ (pos. elements are Hermitian).
- We equip $\mathcal{B}(\mathcal{H})$ with the Hilbert-Schmidt inner product:

Mathematics of Quantum Mechanics 101

A bit more abstract:

- Density operators correspond to positive, normalized elements of the C^{*}-algebra $\mathcal{B}(\mathcal{H})$ of linear bounded operators acting on a Hilbert space \mathcal{H} (for us $\operatorname{dim} \mathcal{H}<\infty$).
- The $*$-map is given by the adjoint ${ }^{\dagger}: A \mapsto A^{\dagger}$, and
$\left\|A^{\dagger} A\right\|=\|A\|^{2}$ where $\|\cdot\|$ is the operator norm.
- Note that $A \geq 0 \Rightarrow A^{\dagger}=A$ (pos. elements are Hermitian).
- We equip $\mathcal{B}(\mathcal{H})$ with the Hilbert-Schmidt inner product:

$$
\langle X, Y\rangle:=\operatorname{Tr}\left(X^{\dagger} Y\right)
$$

Mathematics of Quantum Mechanics 101

Dynamical evolution of a quantum system:

- A quantum channel (or quantum operation) is a map $\wedge: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ that is

1 trace-preserving (TP): $\operatorname{Tr}(\Lambda(X))=\operatorname{Tr} X$ for all $X \in \mathcal{B}(\mathcal{H})$.
2 completely positive (CP): The map

is positive for all $n \in \mathbb{N}$.
D Define the adjoint map $\wedge^{\dagger}: \mathcal{B}(K) \rightarrow \mathcal{B}(\mathcal{H})$ through

\rightarrow Then Λ is TP iff Λ^{\dagger} is unital, i.e. $\Lambda^{\dagger}(\mathbb{1})=\mathbb{1}$.

Mathematics of Quantum Mechanics 101

Dynamical evolution of a quantum system:

- A quantum channel (or quantum operation) is a map
$\wedge: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ that is
1 trace-preserving (TP): $\operatorname{Tr}(\Lambda(X))=\operatorname{Tr} X$ for all $X \in \mathcal{B}(\mathcal{H})$.
2 completely positive (CP): The map

is positive for all $n \in \mathbb{N}$.
D Define the adjoint map $\wedge^{\dagger}: \mathcal{B}(K) \rightarrow \mathcal{B}(\mathcal{H})$ through

- Then Λ is TP iff Λ^{\dagger} is unital, i.e. $\Lambda^{\dagger}(\mathbb{1})=\mathbb{1}$.

Mathematics of Quantum Mechanics 101

Dynamical evolution of a quantum system:

- A quantum channel (or quantum operation) is a map
$\wedge: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ that is
1 trace-preserving (TP): $\operatorname{Tr}(\Lambda(X))=\operatorname{Tr} X$ for all $X \in \mathcal{B}(\mathcal{H})$.
2 completely positive (CP): The map

$$
\Lambda \otimes \mathrm{id}_{n}: \mathcal{B}(\mathcal{H}) \otimes M_{n}(\mathbb{C}) \longrightarrow \mathcal{B}(\mathcal{K}) \otimes M_{n}(\mathbb{C})
$$

is positive for all $n \in \mathbb{N}$.

$$
\left(x \geq 0 \Rightarrow \Lambda \otimes \operatorname{id}_{n}(x) \geq 0\right)
$$

\Rightarrow Define the adjoint map $\wedge^{\dagger}: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ through

\rightarrow Then Λ is TP iff Λ^{\dagger} is unital, i.e. $\Lambda^{\dagger}(\mathbb{1})=\mathbb{1}$.

Mathematics of Quantum Mechanics 101

Dynamical evolution of a quantum system:

- A quantum channel (or quantum operation) is a map
$\wedge: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ that is
1 trace-preserving (TP): $\operatorname{Tr}(\Lambda(X))=\operatorname{Tr} X$ for all $X \in \mathcal{B}(\mathcal{H})$.
2 completely positive (CP): The map

$$
\Lambda \otimes \mathrm{id}_{n}: \mathcal{B}(\mathcal{H}) \otimes M_{n}(\mathbb{C}) \longrightarrow \mathcal{B}(\mathcal{K}) \otimes M_{n}(\mathbb{C})
$$

is positive for all $n \in \mathbb{N} . \quad\left(X \geq 0 \Rightarrow \Lambda \otimes \operatorname{id}_{n}(X) \geq 0\right)$

- Define the adjoint map $\wedge^{\dagger}: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ through

$$
\left\langle\Lambda^{\dagger}(Y), X\right\rangle=\langle Y, \Lambda(X)\rangle \quad \text { for all } X \in \mathcal{B}(\mathcal{H}), Y \in \mathcal{B}(\mathcal{K})
$$

\Rightarrow Then \wedge is TP iff \wedge^{\dagger} is unital, i.e. $\wedge^{\dagger}(\mathbb{1})=\mathbb{1}$.

Mathematics of Quantum Mechanics 101

Dynamical evolution of a quantum system:

- A quantum channel (or quantum operation) is a map
$\wedge: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ that is
1 trace-preserving (TP): $\operatorname{Tr}(\Lambda(X))=\operatorname{Tr} X$ for all $X \in \mathcal{B}(\mathcal{H})$.
2 completely positive (CP): The map

$$
\Lambda \otimes \mathrm{id}_{n}: \mathcal{B}(\mathcal{H}) \otimes M_{n}(\mathbb{C}) \longrightarrow \mathcal{B}(\mathcal{K}) \otimes M_{n}(\mathbb{C})
$$

is positive for all $n \in \mathbb{N} . \quad\left(X \geq 0 \Rightarrow \Lambda \otimes \operatorname{id}_{n}(X) \geq 0\right)$

- Define the adjoint map $\Lambda^{\dagger}: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ through

$$
\left\langle\Lambda^{\dagger}(Y), X\right\rangle=\langle Y, \Lambda(X)\rangle \quad \text { for all } X \in \mathcal{B}(\mathcal{H}), Y \in \mathcal{B}(\mathcal{K})
$$

\rightarrow Then Λ is TP iff Λ^{\dagger} is unital, i.e. $\Lambda^{\dagger}(\mathbb{1})=\mathbb{1}$.

Mathematics of Quantum Mechanics 101

Canonical example of quantum channel: Partial trace

- Consider two Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$.
- Define a linear map $\operatorname{Tr}_{1}: \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ by

$$
\operatorname{Tr}_{1}(x \otimes Y)=\operatorname{Tr}(x) Y
$$

for arbitrary $X \in \mathcal{B}\left(\mathcal{H}_{1}\right), Y \in \mathcal{B}\left(\mathcal{H}_{2}\right)$.

- Trace-preserving: $\operatorname{Tr}\left(\operatorname{Tr}_{1}(X \otimes Y)\right)=\operatorname{Tr}(X) \operatorname{Tr}(Y)=\operatorname{Tr}(X \otimes Y)$
- Completely positive: $\operatorname{Tr}_{1} \otimes \mathrm{id}_{n}$ is positive for all $n \in \mathbb{N}$.

Mathematics of Quantum Mechanics 101

Canonical example of quantum channel: Partial trace

- Consider two Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$.
- Define a linear map $\operatorname{Tr}_{1}: \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ by

$$
\operatorname{Tr}_{1}(X \otimes Y)=\operatorname{Tr}(X) Y
$$

for arbitrary $X \in \mathcal{B}\left(\mathcal{H}_{1}\right), Y \in \mathcal{B}\left(\mathcal{H}_{2}\right)$.

- Completely positive: $\operatorname{Tr}_{1} \otimes \mathrm{id}_{n}$ is positive for all $n \in \mathbb{N}$.

Mathematics of Quantum Mechanics 101

Canonical example of quantum channel: Partial trace

- Consider two Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$.
- Define a linear map $\operatorname{Tr}_{1}: \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ by

$$
\operatorname{Tr}_{1}(X \otimes Y)=\operatorname{Tr}(X) Y
$$

for arbitrary $X \in \mathcal{B}\left(\mathcal{H}_{1}\right), Y \in \mathcal{B}\left(\mathcal{H}_{2}\right)$.

- Trace-preserving: $\operatorname{Tr}\left(\operatorname{Tr}_{1}(X \otimes Y)\right)=\operatorname{Tr}(X) \operatorname{Tr}(Y)=\operatorname{Tr}(X \otimes Y)$
- Completely positive: $\operatorname{Tr}_{1} \otimes \mathrm{id}_{n}$ is positive for all $n \in \mathbb{N}$.

Mathematics of Quantum Mechanics 101

Canonical example of quantum channel: Partial trace

- Consider two Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$.
- Define a linear map $\operatorname{Tr}_{1}: \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$ by

$$
\operatorname{Tr}_{1}(X \otimes Y)=\operatorname{Tr}(X) Y
$$

for arbitrary $X \in \mathcal{B}\left(\mathcal{H}_{1}\right), Y \in \mathcal{B}\left(\mathcal{H}_{2}\right)$.

- Trace-preserving: $\operatorname{Tr}\left(\operatorname{Tr}_{1}(X \otimes Y)\right)=\operatorname{Tr}(X) \operatorname{Tr}(Y)=\operatorname{Tr}(X \otimes Y)$
- Completely positive: $\operatorname{Tr}_{1} \otimes \mathrm{id}_{n}$ is positive for all $n \in \mathbb{N}$.

Mathematics of Quantum Mechanics 101

Importance of partial trace

1 Stinespring's representation theorem [Stinespring 1955]:
Let $\Lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a quantum channel, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{K}^{\prime}$ s.t. $\Lambda(X)=\operatorname{Tr}_{2}\left(V X V^{\dagger}\right)$.
(Every quantum ch. looks like the partial trace in some space.)

12 Purification: Let $\rho \in \mathcal{B}(\mathcal{H})$ be a mixed state, then there is
a Hilbert snace \mathcal{H}^{\prime} (we may take $\operatorname{dim} \mathcal{H}^{\prime}=\operatorname{dim} \mathcal{H}$) and a pure state $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H}{ }^{\prime}$ such that $\rho=\operatorname{Tr}_{2}|\psi\rangle\langle\psi|$ (Every state looks like a pure state in some space.)

Mathematics of Quantum Mechanics 101

Importance of partial trace

1 Stinespring's representation theorem [Stinespring 1955]:
Let $\Lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a quantum channel, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{K}^{\prime}$ s.t. $\Lambda(X)=\operatorname{Tr}_{2}\left(V X V^{\dagger}\right)$.
(Every quantum ch. looks like the partial trace in some space.)

2 Purification: Let $\rho \in \mathcal{B}(\mathcal{H})$ be a mixed state, then there is a Hilbert space \mathcal{H}^{\prime} (we may take $\operatorname{dim} \mathcal{H}^{\prime}=\operatorname{dim} \mathcal{H}$) and a pure state $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H}^{\prime}$ such that $\rho=\operatorname{Tr}_{2}|\psi\rangle\langle\psi|$.
(Every state looks like a pure state in some space.)

Mathematics of Quantum Mechanics 101

Operators and functional calculus

- We write $A \geq B$ if $A-B \geq 0$.
\Rightarrow Let $A \geq 0$ with spectral decomposition $A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$,
and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we define $f(A):=\sum_{i} f\left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$
- f is operator monotone: $A \geq B$ implies $f(A) \geq f(B)$.
$\rightarrow f$ is operator convex: For $\lambda \in(0,1)$ and $A_{1}, A_{2} \geq 0$,

$$
f\left(\lambda A_{1}+(1-\lambda) A_{2}\right) \leq \lambda f\left(A_{1}\right)+(1-\lambda) f\left(A_{2}\right)
$$

- Jensen's operator inequality: f is operator convex iff

$$
f^{\prime}\left(V^{+} A V\right) \leq V^{+} f(A) V
$$

for all $A \geq 0$ and V with $\|V\| \leq 1$.

Mathematics of Quantum Mechanics 101

Operators and functional calculus

- We write $A \geq B$ if $A-B \geq 0$.
- Let $A \geq 0$ with spectral decomposition $A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$, and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we define $f(A):=\sum_{i} f\left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$.
$\Rightarrow f$ is operator monotone: $A \geq B$ implies $f(A) \geq f(B)$.
- f is operator convex: For $\lambda \in(0,1)$ and $A_{1}, A_{2} \geq 0$,

$$
f\left(\lambda \wedge_{1}+(1-\lambda) \wedge_{2}\right) \leq \lambda f\left(\Lambda_{1}\right)+(1-\lambda) f\left(\Lambda_{2}\right)
$$

- Jensen's operator inequality: f is operator convex iff

$$
f\left(V^{\dagger} A V\right) \leq V^{+} f(A) V
$$

Mathematics of Quantum Mechanics 101

Operators and functional calculus

- We write $A \geq B$ if $A-B \geq 0$.
- Let $A \geq 0$ with spectral decomposition $A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$, and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we define $f(A):=\sum_{i} f\left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$.
- f is operator monotone: $A \geq B$ implies $f(A) \geq f(B)$.
$\rightarrow f$ is operator convex: For $\lambda \in(0,1)$ and $A_{1}, A_{2} \geq 0$,

$$
f\left(\lambda A_{1}+(1-\lambda) A_{2}\right) \leq \lambda f\left(A_{1}\right)+(1-\lambda) f\left(A_{2}\right)
$$

- Jensen's operator inequality: f is operator convex iff
\square

Mathematics of Quantum Mechanics 101

Operators and functional calculus

- We write $A \geq B$ if $A-B \geq 0$.
- Let $A \geq 0$ with spectral decomposition $A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$, and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we define $f(A):=\sum_{i} f\left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$.
- f is operator monotone: $A \geq B$ implies $f(A) \geq f(B)$.
- f is operator convex: For $\lambda \in(0,1)$ and $A_{1}, A_{2} \geq 0$,

$$
f\left(\lambda A_{1}+(1-\lambda) A_{2}\right) \leq \lambda f\left(A_{1}\right)+(1-\lambda) f\left(A_{2}\right)
$$

\Rightarrow Jensen's operator inequality: f is operator convex iff

Mathematics of Quantum Mechanics 101

Operators and functional calculus

- We write $A \geq B$ if $A-B \geq 0$.
- Let $A \geq 0$ with spectral decomposition $A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$, and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we define $f(A):=\sum_{i} f\left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$.
- f is operator monotone: $A \geq B$ implies $f(A) \geq f(B)$.
- f is operator convex: For $\lambda \in(0,1)$ and $A_{1}, A_{2} \geq 0$,

$$
f\left(\lambda A_{1}+(1-\lambda) A_{2}\right) \leq \lambda f\left(A_{1}\right)+(1-\lambda) f\left(A_{2}\right)
$$

- Jensen's operator inequality: f is operator convex iff

$$
f\left(V^{\dagger} A V\right) \leq V^{\dagger} f(A) V
$$

for all $A \geq 0$ and V with $\|V\| \leq 1$.

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Quantum relative entropy

Let $X, Y \in \mathcal{B}(\mathcal{H}), X, Y \geq 0$ with $\operatorname{supp} X \subseteq \operatorname{supp} Y$, then

$$
D(X \| Y):=\operatorname{Tr}[X(\log X-\log Y)]
$$

Properties:

Quantum relative entropy

Let $X, Y \in \mathcal{B}(\mathcal{H}), X, Y \geq 0$ with $\operatorname{supp} X \subseteq \operatorname{supp} Y$, then

$$
D(X \| Y):=\operatorname{Tr}[X(\log X-\log Y)]
$$

Properties:

- If X and Y are states, then $D(X \| Y) \geq 0$, and $=0$ iff $X=Y$.
- Correct quantum generalization of KL-divergence:

Quantum relative entropy

Let $X, Y \in \mathcal{B}(\mathcal{H}), X, Y \geq 0$ with $\operatorname{supp} X \subseteq \operatorname{supp} Y$, then

$$
D(X \| Y):=\operatorname{Tr}[X(\log X-\log Y)]
$$

Properties:

- If X and Y are states, then $D(X \| Y) \geq 0$, and $=0$ iff $X=Y$.
- Correct quantum generalization of KL-divergence:

Quantum relative entropy

Let $X, Y \in \mathcal{B}(\mathcal{H}), X, Y \geq 0$ with $\operatorname{supp} X \subseteq \operatorname{supp} Y$, then

$$
D(X \| Y):=\operatorname{Tr}[X(\log X-\log Y)]
$$

Properties:

- If X and Y are states, then $D(X \| Y) \geq 0$, and $=0$ iff $X=Y$.
- Correct quantum generalization of KL-divergence:
$\triangleright D(\hat{P} \| \hat{Q})=D_{\text {KL }}(P \| Q)$ for classical states

$$
\hat{P}=\sum_{x \in \mathcal{X}} P(x)|x\rangle\langle x| \quad \hat{Q}=\sum_{x \in \mathcal{X}} Q(x)|x\rangle\langle x| .
$$

error exponent in quantum hypothesis testing
(just as $D_{\mathrm{KL}}(\cdot \| \cdot)$ in classical hyp. testing)

Quantum relative entropy

Let $X, Y \in \mathcal{B}(\mathcal{H}), X, Y \geq 0$ with $\operatorname{supp} X \subseteq \operatorname{supp} Y$, then

$$
D(X \| Y):=\operatorname{Tr}[X(\log X-\log Y)]
$$

Properties:

- If X and Y are states, then $D(X \| Y) \geq 0$, and $=0$ iff $X=Y$.
- Correct quantum generalization of KL-divergence:
$\triangleright D(\hat{P} \| \hat{Q})=D_{\text {KL }}(P \| Q)$ for classical states

$$
\hat{P}=\sum_{x \in \mathcal{X}} P(x)|x\rangle\langle x| \quad \hat{Q}=\sum_{x \in \mathcal{X}} Q(x)|x\rangle\langle x| .
$$

\triangleright error exponent in quantum hypothesis testing
(just as $D_{\mathrm{KL}}(\cdot \| \cdot)$ in classical hyp. testing)

Quantum relative entropy

- Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be TP and 2-positive map.

2-positive: For $A_{i} \in \mathcal{B}(\mathcal{H}), i=1, \ldots, 4$ we have

$$
\left(\begin{array}{ll}
\Phi\left(A_{1}\right) & \Phi\left(A_{2}\right) \\
\Phi\left(A_{3}\right) & \Phi\left(A_{4}\right)
\end{array}\right) \geq 0 \quad \text { if } \quad\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \geq 0
$$

- Then $D(\cdot \| \cdot)$ satisfies the data processing inequality $D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))$.
- This holds in particular for every CPTP map \wedge. Recall: Φ CP : $\Leftrightarrow \Phi$ is n-positive for all n
- Recent result: DPI holds for every positive map.
[Müller-Hermes and Reeb 2015]

Quantum relative entropy

- Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be TP and 2-positive map.

2-positive: For $A_{i} \in \mathcal{B}(\mathcal{H}), i=1, \ldots, 4$ we have

$$
\left(\begin{array}{ll}
\Phi\left(A_{1}\right) & \Phi\left(A_{2}\right) \\
\Phi\left(A_{3}\right) & \Phi\left(A_{4}\right)
\end{array}\right) \geq 0 \quad \text { if } \quad\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \geq 0
$$

- Then $D(\cdot \| \cdot)$ satisfies the data processing inequality

$$
D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))
$$

This holds in particular for every CPTP map \wedge. Recall: Φ CP : $\Leftrightarrow \Phi$ is n-positive for all n

- Recent result: DPI holds for every positive map.
[Müller-Hermes and Reeb 2015]

Quantum relative entropy

- Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be TP and 2-positive map.

2-positive: For $A_{i} \in \mathcal{B}(\mathcal{H}), i=1, \ldots, 4$ we have

$$
\left(\begin{array}{ll}
\Phi\left(A_{1}\right) & \Phi\left(A_{2}\right) \\
\Phi\left(A_{3}\right) & \Phi\left(A_{4}\right)
\end{array}\right) \geq 0 \quad \text { if } \quad\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \geq 0
$$

- Then $D(\cdot \| \cdot)$ satisfies the data processing inequality

$$
D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))
$$

- This holds in particular for every CPTP map \wedge.

Recall: Φ CP $: \Leftrightarrow \Phi$ is n-positive for all n

- Recent result: DPI holds for every positive map.
[Müller-Hermes and Reeb 2015]

Quantum relative entropy

- Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be TP and 2-positive map.

2-positive: For $A_{i} \in \mathcal{B}(\mathcal{H}), i=1, \ldots, 4$ we have

$$
\left(\begin{array}{ll}
\Phi\left(A_{1}\right) & \Phi\left(A_{2}\right) \\
\Phi\left(A_{3}\right) & \Phi\left(A_{4}\right)
\end{array}\right) \geq 0 \quad \text { if } \quad\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \geq 0
$$

- Then $D(\cdot \| \cdot)$ satisfies the data processing inequality

$$
D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))
$$

- This holds in particular for every CPTP map \wedge.

Recall: Φ CP $: \Leftrightarrow \Phi$ is n-positive for all n

- Recent result: DPI holds for every positive map.
[Müller-Hermes and Reeb 2015]

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Equality in data processing inequality

Theorem (Petz 1988)
Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a 2-positive TP map, and let
$X, Y \in \mathcal{B}(\mathcal{H})$ be invertible density operators. Then we have

$$
D(X \| Y)=D(\Phi(X) \| \Phi(Y))
$$

if and only if for all $t \in \mathbb{R}$

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} .
$$

Remark: Assumption of invertible X, Y can be relaxed to

Equality in data processing inequality

Theorem (Petz 1988)
Let $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a 2-positive TP map, and let
$X, Y \in \mathcal{B}(\mathcal{H})$ be invertible density operators. Then we have

$$
D(X \| Y)=D(\Phi(X) \| \Phi(Y))
$$

if and only if for all $t \in \mathbb{R}$

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} .
$$

Remark: Assumption of invertible X, Y can be relaxed to $\operatorname{supp} X \subseteq \operatorname{supp} Y$.

Equality in data processing inequality

$D(X \| Y)=D(\Phi(X) \| \Phi(Y))$ if and only if

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R} .
$$

- Algebraic condition on map and operators.
- Equivalent formulation: There exists a recovery map

such that $\mathcal{R}_{\Phi, Y}(\Phi(X))=X$ and $\mathcal{R}_{\Phi, Y}(\Phi(Y))=Y$.
- \mathcal{R}_{Φ}, recovers X, Y by reverting the action of Φ.
- Recovery on X :

$$
X=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \Phi(X) \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

Equality in data processing inequality

$D(X \| Y)=D(\Phi(X) \| \Phi(Y))$ if and only if

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R} .
$$

- Algebraic condition on map and operators.
- Equivalent formulation: There exists a recovery map

$$
\mathcal{R}_{\Phi, Y}(\cdot)=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \cdot \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

such that $\mathcal{R}_{\Phi, Y}(\Phi(X))=X$ and $\mathcal{R}_{\Phi, Y}(\Phi(Y))=Y$.
$\Rightarrow \mathcal{R}_{\Phi, Y}$ recovers X, Y by reverting the action of Φ.

- Recovery on X :

$$
x=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \Phi(X) \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

Equality in data processing inequality

$D(X \| Y)=D(\Phi(X) \| \Phi(Y))$ if and only if

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R} .
$$

- Algebraic condition on map and operators.
- Equivalent formulation: There exists a recovery map

$$
\mathcal{R}_{\Phi, Y}(\cdot)=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \cdot \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

such that $\mathcal{R}_{\Phi, Y}(\Phi(X))=X$ and $\mathcal{R}_{\Phi, Y}(\Phi(Y))=Y$.

- $\mathcal{R}_{\Phi, Y}$ recovers X, Y by reverting the action of Φ.
- Recovery on X :

$$
X=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \Phi(X) \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

Equality in data processing inequality

$D(X \| Y)=D(\Phi(X) \| \Phi(Y))$ if and only if

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R} .
$$

- Algebraic condition on map and operators.
- Equivalent formulation: There exists a recovery map

$$
\mathcal{R}_{\Phi, Y}(\cdot)=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \cdot \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

such that $\mathcal{R}_{\Phi, r}(\Phi(X))=X$ and $\mathcal{R}_{\Phi, r}(\Phi(Y))=Y$.

- $\mathcal{R}_{\Phi, r}$ recovers X, Y by reverting the action of Φ.
- Recovery on X :

$$
X=Y^{1 / 2} \Phi^{\dagger}\left(\Phi(Y)^{-1 / 2} \Phi(X) \Phi(Y)^{-1 / 2}\right) Y^{1 / 2}
$$

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{D}(T)=T B$, satisfying

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{B}(T)=T B$, satisfying
$L_{A} \circ R_{B}=R_{B} \circ L_{A}$.
$L_{A^{-1}}=L_{A}^{-1}$ if A is invertible, likewise for R_{B}.
L_{A}, R_{B} are self-adjoint, and positive if $A, B \geq 0$.
For analytic $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ we have $f\left(L_{A}\right)=L_{f(A)}$ and likewise
for R_{B} if $A, B \geq 0$.

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{B}(T)=T B$, satisfying
$\triangleright L_{A} \circ R_{B}=R_{B} \circ L_{A}$.
$L_{A^{-1}}=L_{A}^{-1}$ if A is invertible, likewise for R_{B}.
L_{A}, R_{B} are self-adjoint, and positive if $A, B \geq 0$.
For analytic $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ we have $f\left(L_{A}\right)=L_{f(A)}$ and likewise
for R_{B} if $A, B \geq 0$.

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{B}(T)=T B$, satisfying
$\triangleright L_{A} \circ R_{B}=R_{B} \circ L_{A}$.
$\triangleright L_{A^{-1}}=L_{A}^{-1}$ if A is invertible, likewise for R_{B}.
$\triangleright L_{A}, R_{B}$ are self-adjoint, and positive if $A, B \geq 0$.
For analytic $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ we have $f\left(L_{A}\right)=L_{f(A)}$ and likewise for R_{B} if $A, B \geq 0$.

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{B}(T)=T B$, satisfying
$\triangleright L_{A} \circ R_{B}=R_{B} \circ L_{A}$.
$\triangleright L_{A^{-1}}=L_{A}^{-1}$ if A is invertible, likewise for R_{B}.
$\triangleright L_{A}, R_{B}$ are self-adjoint, and positive if $A, B \geq 0$.
For analytic $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ we have $f\left(L_{A}\right)=L_{f(A)}$ and likewise for R_{B} if $A, B>0$.

Proof of the main theorem

- We first analyze a proof of the data processing inequality via relative modular operators.
- Consider the multiplication operators $L_{A}(T):=A T$ and $R_{B}(T)=T B$, satisfying
$\triangleright L_{A} \circ R_{B}=R_{B} \circ L_{A}$.
$\triangleright L_{A^{-1}}=L_{A}^{-1}$ if A is invertible, likewise for R_{B}.
$\triangleright L_{A}, R_{B}$ are self-adjoint, and positive if $A, B \geq 0$.
\triangleright For analytic $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ we have $f\left(L_{A}\right)=L_{f(A)}$ and likewise for R_{B} if $A, B \geq 0$.

Proof of the main theorem

- Define the relative modular operator $\Delta_{Y \mid X}=L_{Y} \circ R_{X^{-1}}$.

$$
\begin{aligned}
& \text { Then } \log \Delta_{Y \mid X}=L_{\log Y}-R_{\log X} \text {, and } \\
& \qquad D(X \| Y)=\operatorname{Tr}[X(\log X-\log Y)]=-\left\langle X^{1 / 2}, \log \Delta_{Y \mid X}\left(X^{1 / 2}\right)\right\rangle . \\
& \text { Assume now that } \Phi(X) \text { is also invertible, and set } \\
& \qquad \Delta \equiv \Delta_{Y \mid X} \quad \Delta_{\Phi} \equiv \Delta_{\Phi(Y) \mid \Phi(X)}
\end{aligned}
$$

such that

$$
D(X \| Y)=-\left\langle X^{1 / 2}, \log \Delta\left(X^{1 / 2}\right)\right\rangle
$$

Proof of the main theorem

- Define the relative modular operator $\Delta_{Y \mid X}=L_{Y} \circ R_{X^{-1}}$.
- Then $\log \Delta_{Y \mid X}=L_{\log Y}-R_{\log X}$, and

$$
D(X \| Y)=\operatorname{Tr}[X(\log X-\log Y)]=-\left\langle X^{1 / 2}, \log \Delta_{Y \mid X}\left(X^{1 / 2}\right)\right\rangle
$$

- Assume now that $\Phi(X)$ is also invertible, and set

such that

Proof of the main theorem

- Define the relative modular operator $\Delta_{Y \mid X}=L_{Y} \circ R_{X^{-1}}$.
- Then $\log \Delta_{Y \mid X}=L_{\log Y}-R_{\log X}$, and

$$
D(X \| Y)=\operatorname{Tr}[X(\log X-\log Y)]=-\left\langle X^{1 / 2}, \log \Delta_{Y \mid X}\left(X^{1 / 2}\right)\right\rangle
$$

- Assume now that $\Phi(X)$ is also invertible, and set

$$
\Delta \equiv \Delta_{Y \mid X} \quad \Delta_{\Phi} \equiv \Delta_{\Phi(Y) \mid \Phi(X)}
$$

such that

$$
\begin{aligned}
D(X \| Y) & =-\left\langle X^{1 / 2}, \log \Delta\left(X^{1 / 2}\right)\right\rangle \\
D(\Phi(X) \| \Phi(Y)) & =-\left\langle\Phi(X)^{1 / 2}, \log \Delta_{\Phi}\left(\Phi(X)^{1 / 2}\right)\right\rangle
\end{aligned}
$$

Proof of the main theorem

- Consider the integral representation

$$
\log x=\int_{0}^{\infty} \frac{1}{1+t}-\frac{1}{x+t} d t
$$

- We can then write

$$
-(1+t)^{-1} d t
$$

and focus on the integrands written in terms of the
resolvents $\left.\left(\Lambda_{(}\right)+t\right)^{-1}$.

Proof of the main theorem

- Consider the integral representation

$$
\log x=\int_{0}^{\infty} \frac{1}{1+t}-\frac{1}{x+t} d t
$$

- We can then write

$$
\begin{aligned}
D(X \| Y)= & \int_{0}^{\infty}\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle-(1+t)^{-1} d t \\
D(\Phi(X) \| \Phi(Y))= & \int_{0}^{\infty}\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& -(1+t)^{-1} d t
\end{aligned}
$$

and focus on the integrands written in terms of the resolvents $\left(\Delta_{(\Phi)}+t\right)^{-1}$.

Proof of the main theorem

- Define a linear map $V: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$:

$$
V(A):=\Phi^{\dagger}\left(A \Phi(X)^{-1 / 2}\right) X^{1 / 2} .
$$

Φ^{\dagger} is unital: $V\left(\Phi(X)^{1 / 2}\right)=\Phi^{\dagger}(\mathbb{1}) X^{1 / 2}=X^{1 / 2}$.

- V is a contraction: $\|V(A)\|^{2} \leq\|A\|$ for all A.
- To show this, use the Schwarz inequality

$$
\Phi^{\dagger}\left(A^{\dagger} A\right) \geq \Phi^{\dagger}\left(A^{\dagger}\right) \Phi^{\dagger}(A) .
$$

2-positive TP maps largest class of maps for which SI holds!

* V relates the two modular operators:

$$
V^{\dagger} \Delta V \leq \Delta_{\Phi},
$$

Proof of the main theorem

- Define a linear map $V: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H}):$

$$
V(A):=\Phi^{\dagger}\left(A \Phi(X)^{-1 / 2}\right) x^{1 / 2}
$$

$-\Phi^{\dagger}$ is unital: $V\left(\Phi(X)^{1 / 2}\right)=\Phi^{\dagger}(\mathbb{1}) X^{1 / 2}=X^{1 / 2}$.
V is a contraction: $\|V(A)\|^{2} \leq\|A\|$ for all A.
To show this, use the Schwarz inequality

$$
\Phi^{\dagger}\left(A^{\dagger} A\right) \geq \Phi^{\dagger}\left(A^{\dagger}\right) \Phi^{\dagger}(A)
$$

2-positive TP maps largest class of maps for which SI holds!

- 1/relates the two modular onerators:

$$
V^{\dagger} \Delta V \leq \Delta_{\Phi},
$$

Proof of the main theorem

- Define a linear map $V: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H}):$

$$
V(A):=\Phi^{\dagger}\left(A \Phi(X)^{-1 / 2}\right) x^{1 / 2}
$$

- Φ^{\dagger} is unital: $V\left(\Phi(X)^{1 / 2}\right)=\Phi^{\dagger}(\mathbb{1}) X^{1 / 2}=X^{1 / 2}$.
- V is a contraction: $\|V(A)\|^{2} \leq\|A\|$ for all A.

To show this, use the Schwarz inequality

$$
\Phi^{\dagger}\left(A^{\dagger} A\right) \geq \Phi^{\dagger}\left(A^{\dagger}\right) \Phi^{\dagger}(A)
$$

2-positive TP maps largest class of maps for which SI holds!

- V relates the two modular operators:

$$
V^{\dagger} \Delta V \leq \Delta_{\Phi},
$$

Proof of the main theorem

- Define a linear map $V: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$:

$$
V(A):=\Phi^{\dagger}\left(A \Phi(X)^{-1 / 2}\right) x^{1 / 2}
$$

- Φ^{\dagger} is unital: $V\left(\Phi(X)^{1 / 2}\right)=\Phi^{\dagger}(\mathbb{1}) X^{1 / 2}=X^{1 / 2}$.
- V is a contraction: $\|V(A)\|^{2} \leq\|A\|$ for all A.
- To show this, use the Schwarz inequality

$$
\Phi^{\dagger}\left(A^{\dagger} A\right) \geq \Phi^{\dagger}\left(A^{\dagger}\right) \Phi^{\dagger}(A)
$$

2-positive TP maps largest class of maps for which SI holds!

- V relates the two modular operators:

Proof of the main theorem

- Define a linear map $V: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$:

$$
V(A):=\Phi^{\dagger}\left(A \Phi(X)^{-1 / 2}\right) X^{1 / 2}
$$

- Φ^{\dagger} is unital: $V\left(\Phi(X)^{1 / 2}\right)=\Phi^{\dagger}(\mathbb{1}) X^{1 / 2}=X^{1 / 2}$.
- V is a contraction: $\|V(A)\|^{2} \leq\|A\|$ for all A.
- To show this, use the Schwarz inequality

$$
\Phi^{\dagger}\left(A^{\dagger} A\right) \geq \Phi^{\dagger}\left(A^{\dagger}\right) \Phi^{\dagger}(A)
$$

2-positive TP maps largest class of maps for which SI holds!

- V relates the two modular operators:

$$
V^{\dagger} \Delta V \leq \Delta_{\Phi}
$$

again by application of the Schwarz inequality.

Proof of the main theorem

- V is a contraction, and $V^{\dagger} \Delta V \leq \Delta_{\Phi}$.
$\rightarrow y \mapsto(y+t)^{-1}$ is operator monotone (decreasing) and
operator convex:

$$
\left(\Delta_{\Phi}+t\right)^{-1} \leq\left(V^{\dagger} \Delta V+t\right)^{-1} \leq V^{\dagger}(\Delta+t)^{-1} V
$$

(second \leq follows from Jensen's operator inequality)

- Hence:
$\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle=\left\langle V \Phi(X)^{1 / 2},(\Delta+t)^{1 / 2} V\left(\Phi(X)^{1 / 2}\right)\right\rangle$

$$
\begin{aligned}
& =\left\langle\Phi(x)^{1 / 2} V^{\dagger}(\Delta+t)^{1 / 2} V\left(\Phi(x)^{1 / 2}\right)\right\rangle \\
& \geq\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle .
\end{aligned}
$$

Proof of the main theorem

- V is a contraction, and $V^{\dagger} \Delta V \leq \Delta_{\Phi}$.
- $y \mapsto(y+t)^{-1}$ is operator monotone (decreasing) and operator convex:

$$
\left(\Delta_{\Phi}+t\right)^{-1} \leq\left(V^{\dagger} \Delta V+t\right)^{-1} \leq V^{\dagger}(\Delta+t)^{-1} V
$$

(second \leq follows from Jensen's operator inequality)
> Hence:
$\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle=\left\langle V \Phi(X)^{1 / 2},(\Delta+t)^{1 / 2} V\left(\Phi(X)^{1 / 2}\right)\right\rangle$

Proof of the main theorem

- V is a contraction, and $V^{\dagger} \Delta V \leq \Delta_{\Phi}$.
$\checkmark y \mapsto(y+t)^{-1}$ is operator monotone (decreasing) and operator convex:

$$
\left(\Delta_{\Phi}+t\right)^{-1} \leq\left(V^{\dagger} \Delta V+t\right)^{-1} \leq V^{\dagger}(\Delta+t)^{-1} V
$$

(second \leq follows from Jensen's operator inequality)

- Hence:

$$
\begin{aligned}
\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle & =\left\langle V \Phi(X)^{1 / 2},(\Delta+t)^{1 / 2} V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& =\left\langle\Phi(X)^{1 / 2}, V^{\dagger}(\Delta+t)^{1 / 2} V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& \geq\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
\end{aligned}
$$

Proof of the main theorem

- Recall integral representations:

$$
\begin{aligned}
D(X \| Y)= & \int_{0}^{\infty}\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle-(1+t)^{-1} d t \\
D(\Phi(X) \| \Phi(Y))= & \int_{0}^{\infty}\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& -(1+t)^{-1} d t
\end{aligned}
$$

- Just proved:

- Insert this in the integral representations:

Proof of the main theorem

- Recall integral representations:

$$
\begin{aligned}
D(X \| Y)= & \int_{0}^{\infty}\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle-(1+t)^{-1} d t \\
D(\Phi(X) \| \Phi(Y))= & \int_{0}^{\infty}\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& -(1+t)^{-1} d t
\end{aligned}
$$

- Just proved:

$$
\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle \geq\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
$$

- Insert this in the integral representations:
$D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))$

Proof of the main theorem

- Recall integral representations:

$$
\begin{aligned}
& D(X \| Y)= \int_{0}^{\infty}\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle-(1+t)^{-1} d t \\
& D(\Phi(X) \| \Phi(Y))= \int_{0}^{\infty}\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
&-(1+t)^{-1} d t
\end{aligned}
$$

- Just proved:

$$
\left\langle X^{1 / 2},(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\rangle \geq\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
$$

- Insert this in the integral representations:

$$
D(X \| Y) \geq D(\Phi(X) \| \Phi(Y))
$$

Proof of the main theorem

- Equality in DPI if and only if for all $t>0$

$$
\begin{aligned}
\left\langle\Phi(X)^{1 / 2}, V^{\dagger}(\Delta+t)^{-1}\right. & \left.V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& =\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle .
\end{aligned}
$$

Let $A \geq B$, then $\langle v| A|v\rangle=\langle v| B|v\rangle$ implies $A|v\rangle=B|v\rangle$. - Hence, $V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$. - It follows by an easy calculation that

Proof of the main theorem

- Equality in DPI if and only if for all $t>0$

$$
\begin{aligned}
&\left\langle\Phi(X)^{1 / 2}, V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
&=\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
\end{aligned}
$$

- Let $A \geq B$, then $\langle v| A|v\rangle=\langle v| B|v\rangle$ implies $A|v\rangle=B|v\rangle$.
\Rightarrow Hence, $V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$.
- It follows by an easy calculation that

Proof of the main theorem

- Equality in DPI if and only if for all $t>0$

$$
\begin{aligned}
&\left\langle\Phi(X)^{1 / 2}, V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
&=\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
\end{aligned}
$$

- Let $A \geq B$, then $\langle v| A|v\rangle=\langle v| B|v\rangle$ implies $A|v\rangle=B|v\rangle$.
- Hence, $V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$.
- It follows by an easy calculation that

Proof of the main theorem

- Equality in DPI if and only if for all $t>0$

$$
\begin{aligned}
\left\langle\Phi(X)^{1 / 2}, V^{\dagger}(\Delta+t)^{-1}\right. & \left.V\left(\Phi(X)^{1 / 2}\right)\right\rangle \\
& =\left\langle\Phi(X)^{1 / 2},\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)\right\rangle
\end{aligned}
$$

- Let $A \geq B$, then $\langle v| A|v\rangle=\langle v| B|v\rangle$ implies $A|v\rangle=B|v\rangle$.
- Hence, $V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$.
- It follows by an easy calculation that

$$
\begin{aligned}
\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2} & =\left\|V^{\dagger}(\Delta+t)^{-1} V\left(\Phi(X)^{1 / 2}\right)\right\|^{2} \\
& =\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2} .
\end{aligned}
$$

Proof of the main theorem

- $\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|=\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2}$.
- If $\left.\| W^{\dagger}|\xi\rangle\left\|^{2}=\right\| \| \xi\right\rangle \|^{2}$ for an arbitrary contraction W, then $W W^{\dagger}|\xi\rangle=|\xi\rangle$
- Recall: $V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$
- Then: $V\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)=(\Delta+t)^{-1}\left(X^{1 / 2}\right)$.
- That is, the resolvents of Δ_{Φ} and Δ coincide on the vectors $\Phi(X)^{1 / 2}$ and $X^{1 / 2}$, respectivelv (modulo V).

Proof of the main theorem

- $\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|=\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2}$.
- If $\left.\| W^{\dagger}|\xi\rangle\left\|^{2}=\right\| \| \xi\right\rangle \|^{2}$ for an arbitrary contraction W, then $W W^{\dagger}|\xi\rangle=|\xi\rangle$
- Recall: $V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$ Then: $V\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)=(\Delta+t)^{-1}\left(X^{1 / 2}\right)$.

That is, the resolvents of Δ_{Φ} and Δ coincide on the vectors $\Phi(X)^{1 / 2}$ and $X^{1 / 2}$, resnectively (modulo $1 /$).

Proof of the main theorem

- $\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|=\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2}$.
- If $\left.\| W^{\dagger}|\xi\rangle\left\|^{2}=\right\| \| \xi\right\rangle \|^{2}$ for an arbitrary contraction W, then $W W^{\dagger}|\xi\rangle=|\xi\rangle$
- Recall: $V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$

That is, the resolvents of Δ_{Φ} and Δ coincide on the vectors $\Phi(X)^{1 / 2}$ and $X^{1 / 2}$, resnectively (modulo $1 /$).

Proof of the main theorem

- $\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|=\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2}$.
- If $\| W^{\dagger}|\xi\rangle\left\|^{2}=\right\||\xi\rangle \|^{2}$ for an arbitrary contraction W, then $W W^{\dagger}|\xi\rangle=|\xi\rangle$
- Recall: $V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$
- Then: $V\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)=(\Delta+t)^{-1}\left(X^{1 / 2}\right)$.

Proof of the main theorem

- $\left\|V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|=\left\|(\Delta+t)^{-1}\left(X^{1 / 2}\right)\right\|^{2}$.
- If $\| W^{\dagger}|\xi\rangle\left\|^{2}=\right\||\xi\rangle \|^{2}$ for an arbitrary contraction W, then $W W^{\dagger}|\xi\rangle=|\xi\rangle$
- Recall: $V^{\dagger}(\Delta+t)^{-1}\left(X^{1 / 2}\right)=\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)$
- Then: $V\left(\Delta_{\Phi}+t\right)^{-1}\left(\Phi(X)^{1 / 2}\right)=(\Delta+t)^{-1}\left(X^{1 / 2}\right)$.
- That is, the resolvents of Δ_{Φ} and Δ coincide on the vectors $\Phi(X)^{1 / 2}$ and $X^{1 / 2}$, respectively (modulo V).

Proof of the main theorem

- The resolvent of an operator O determines the projections onto the eigenspaces of O.
- Hence, for every polynomial p we have

$$
V p\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=p(\Delta)\left(X^{1 / 2}\right)
$$

- Stone-Weierstrass approximation theorem: polynomials are dense in the space of continuous functions
- Hence, for every continuous f we have

$$
V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)
$$

Proof of the main theorem

- The resolvent of an operator O determines the projections onto the eigenspaces of O.
- Hence, for every polynomial p we have

$$
V p\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=p(\Delta)\left(X^{1 / 2}\right)
$$

- Stone-Weierstrass approximation theorem: polynomials
are dense in the space of continuous functions
- Hence, for every continuous f we have

$$
V f\left(\Delta_{\Phi}\right)\left(\Phi^{(x}()^{1 / 2}\right)=f(\Delta)\left(x^{1 / 2}\right)
$$

Proof of the main theorem

- The resolvent of an operator O determines the projections onto the eigenspaces of O.
- Hence, for every polynomial p we have

$$
V p\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=p(\Delta)\left(X^{1 / 2}\right)
$$

- Stone-Weierstrass approximation theorem: polynomials are dense in the space of continuous functions
- Hence, for every continuous f we have

$$
V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)
$$

Proof of the main theorem

- The resolvent of an operator O determines the projections onto the eigenspaces of O.
- Hence, for every polynomial p we have

$$
V p\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=p(\Delta)\left(X^{1 / 2}\right)
$$

- Stone-Weierstrass approximation theorem: polynomials are dense in the space of continuous functions
- Hence, for every continuous f we have

$$
V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)
$$

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f. - Choose $f(x)=x^{\text {it }}$, then

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f.
- Choose $f(x)=x^{\text {it }}$, then

$$
V \Delta_{\Phi}^{i t}\left(\Phi(X)^{1 / 2}\right)=\Delta^{i t}\left(X^{1 / 2}\right)
$$

The last line follows from taking the adjoint and using the fact that $\wedge^{\prime}\left(A^{+}=\wedge^{(} \wedge^{+}\right)$for a positive map \wedge.

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f.
- Choose $f(x)=x^{\text {it }}$, then

$$
\begin{aligned}
V \Delta_{\Phi}^{i t}\left(\Phi(X)^{1 / 2}\right) & =\Delta^{i t}\left(X^{1 / 2}\right) \\
\Leftrightarrow V\left(\Phi(Y)^{i t} \Phi(X)^{-i t} \Phi(X)^{1 / 2}\right) & =Y^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) X^{1 / 2} & =Y^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) & =Y^{i t} X^{-i t} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right) & =X^{i t} Y^{-i t}
\end{aligned}
$$

The last line follows from taking the adjoint and using the fact that $\wedge(A)^{\dagger}=\wedge\left(A^{\dagger}\right)$ for a positive map \wedge.

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f.
- Choose $f(x)=x^{\text {it }}$, then

$$
\begin{aligned}
V \Delta_{\Phi}^{i t}\left(\Phi(X)^{1 / 2}\right) & =\Delta^{i t}\left(X^{1 / 2}\right) \\
\Leftrightarrow V\left(\Phi(Y)^{i t} \Phi(X)^{-i t} \Phi(X)^{1 / 2}\right) & =\gamma^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) X^{1 / 2} & =\gamma^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) & =\gamma^{i t} X^{-i t} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right) & =x^{i t} Y^{-i t}
\end{aligned}
$$

The last line follows from taking the adjoint and using the fact that $\wedge(A)^{\dagger}=\wedge\left(A^{\dagger}\right)$ for a positive map \wedge.

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f.
- Choose $f(x)=x^{\text {it }}$, then

$$
\begin{aligned}
V \Delta_{\Phi}^{i t}\left(\Phi(X)^{1 / 2}\right) & =\Delta^{i t}\left(X^{1 / 2}\right) \\
\Leftrightarrow V\left(\Phi(Y)^{i t} \Phi(X)^{-i t} \Phi(X)^{1 / 2}\right) & =\gamma^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) X^{1 / 2} & =Y^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) & =\gamma^{i t} X^{-i t} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right) & =X^{i t} y^{-i t}
\end{aligned}
$$

The last line follows from taking the adjoint and using the fact that $\wedge(A)^{\dagger}=\wedge\left(A^{\dagger}\right)$ for a positive map \wedge.

Proof of the main theorem

- $V f\left(\Delta_{\Phi}\right)\left(\Phi(X)^{1 / 2}\right)=f(\Delta)\left(X^{1 / 2}\right)$ for all continuous f.
- Choose $f(x)=x^{\text {it }}$, then

$$
\begin{aligned}
V \Delta_{\Phi}^{i t}\left(\Phi(X)^{1 / 2}\right) & =\Delta^{i t}\left(X^{1 / 2}\right) \\
\Leftrightarrow V\left(\Phi(Y)^{i t} \Phi(X)^{-i t} \Phi(X)^{1 / 2}\right) & =\gamma^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) X^{1 / 2} & =\gamma^{i t} X^{-i t} X^{1 / 2} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(Y)^{i t} \Phi(X)^{-i t}\right) & =\gamma^{i t} X^{-i t} \\
\Leftrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right) & =x^{i t} Y^{-i t}
\end{aligned}
$$

The last line follows from taking the adjoint and using the fact that $\Lambda(A)^{\dagger}=\Lambda\left(A^{\dagger}\right)$ for a positive map Λ.

Proof of the main theorem

- Proven so far:

$$
\begin{aligned}
D(X \| Y) & =D(\Phi(X) \| \Phi(Y)) \\
& \Longrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t>0
\end{aligned}
$$

- To prove sufficiency of $\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t}$, differentiate this at $t=0$:

$$
\Phi^{\dagger}(\log \Phi(X)-\log \Phi(Y))=\log X-\log Y
$$

- Using the definition of Φ^{\dagger}, this implies equality in the data processing inequality.

Proof of the main theorem

- Proven so far:

$$
\begin{aligned}
D(X \| Y) & =D(\Phi(X) \| \Phi(Y)) \\
& \Longrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t>0
\end{aligned}
$$

- To prove sufficiency of $\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t}$, differentiate this at $t=0$:

$$
\Phi^{\dagger}(\log \Phi(X)-\log \Phi(Y))=\log X-\log Y
$$

- Using the definition of Φ^{\dagger}, this implies equality in the data processing inequality.

Proof of the main theorem

- Proven so far:

$$
\begin{aligned}
D(X \| Y) & =D(\Phi(X) \| \Phi(Y)) \\
& \Longrightarrow \Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t>0
\end{aligned}
$$

- To prove sufficiency of $\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t}$, differentiate this at $t=0$:

$$
\Phi^{\dagger}(\log \Phi(X)-\log \Phi(Y))=\log X-\log Y
$$

- Using the definition of Φ^{\dagger}, this implies equality in the data processing inequality.

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

von Neumann entropy

For a state ρ define the von Neumann entropy

$$
S(\rho)=-\operatorname{Tr} \rho \log \rho=-D(\rho \| \mathbb{1})
$$

- $S(\rho)=H\left(\left\{\lambda_{i}\right\}_{i}\right)$ where λ_{i} are the eigenvalues of ρ and $H\left(\left\{p_{i}\right\}_{i}\right)=-\sum_{i} p_{i} \log p_{i}$ is the Shannon entropy.
$>0 \leq S(\rho) \leq \log \operatorname{dim} \mathcal{H}$ for all states ρ on \mathcal{H}.
- Additivity: $S(\rho \otimes \sigma)=S(\rho)+S(\sigma)$
- Subadditivity: Let $\rho_{A B}$ be a state on a bipartite system $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and set $\rho_{A}=\operatorname{Tr}_{B} \rho_{A B}$ and $\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}$. Then,

$$
S\left(\rho_{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right) .
$$

von Neumann entropy

For a state ρ define the von Neumann entropy

$$
S(\rho)=-\operatorname{Tr} \rho \log \rho=-D(\rho \| \mathbb{1})
$$

- $S(\rho)=H\left(\left\{\lambda_{i}\right\}_{i}\right)$ where λ_{i} are the eigenvalues of ρ and $H\left(\left\{p_{i}\right\}_{i}\right)=-\sum_{i} p_{i} \log p_{i}$ is the Shannon entropy.
- $0 \leq S(\rho) \leq \log \operatorname{dim} \mathcal{H}$ for all states ρ on \mathcal{H}.
\Rightarrow Additivity: $S(\rho \otimes \sigma)=S(\rho)+S(\sigma)$
- Subadditivity: Let $\rho_{A B}$ be a state on a bipartite system $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and set $\rho_{A}=\operatorname{Tr} \rho_{B} \rho_{A B}$ and $\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}$. Then,

$$
S\left(\rho_{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right) .
$$

von Neumann entropy

For a state ρ define the von Neumann entropy

$$
S(\rho)=-\operatorname{Tr} \rho \log \rho=-D(\rho \| \mathbb{1})
$$

- $S(\rho)=H\left(\left\{\lambda_{i}\right\}_{i}\right)$ where λ_{i} are the eigenvalues of ρ and $H\left(\left\{p_{i}\right\}_{i}\right)=-\sum_{i} p_{i} \log p_{i}$ is the Shannon entropy.
- $0 \leq S(\rho) \leq \log \operatorname{dim} \mathcal{H}$ for all states ρ on \mathcal{H}.
- Additivity: $S(\rho \otimes \sigma)=S(\rho)+S(\sigma)$
- Subadditivity: Let $\rho_{A B}$ be a state on a bipartite system
$\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and set $\rho_{A}=\operatorname{Tr}_{B} \rho_{A B}$ and $\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}$. Then,

$$
S\left(\rho_{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right)
$$

von Neumann entropy

For a state ρ define the von Neumann entropy

$$
S(\rho)=-\operatorname{Tr} \rho \log \rho=-D(\rho \| \mathbb{1})
$$

- $S(\rho)=H\left(\left\{\lambda_{i}\right\}_{i}\right)$ where λ_{i} are the eigenvalues of ρ and $H\left(\left\{p_{i}\right\}_{i}\right)=-\sum_{i} p_{i} \log p_{i}$ is the Shannon entropy.
- $0 \leq S(\rho) \leq \log \operatorname{dim} \mathcal{H}$ for all states ρ on \mathcal{H}.
- Additivity: $S(\rho \otimes \sigma)=S(\rho)+S(\sigma)$
- Subadditivity: Let $\rho_{A B}$ be a state on a bipartite system
$\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and set $\rho_{A}=\operatorname{Tr}_{B} \rho_{A B}$ and $\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}$. Then,

$$
S\left(\rho_{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right)
$$

Strong subadditivity of von Neumann entropy

Strong subadditivity [Lieb and Ruskai 1973]:

- Let $\rho_{A B C}$ be a tripartite state, and denote by $\rho_{A B}, \rho_{B C}, \rho_{B}$ the corresponding marginals. Then:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Quantum conditional mutual information

$$
I(A ; C \mid B)_{\rho}=S(A B)+S(B C)-S(B)-S(A B C)
$$

where $S(A B) \equiv S\left(\rho_{A B}\right)$ etc.

- Definition of qCMI analogous to classical quantity!
$\Rightarrow S S A \Longrightarrow I(A ; C \mid B)_{\rho} \geq 0$ for all $\rho_{A B C}$.

Strong subadditivity of von Neumann entropy

Strong subadditivity [Lieb and Ruskai 1973]:

- Let $\rho_{A B C}$ be a tripartite state, and denote by $\rho_{A B}, \rho_{B C}, \rho_{B}$ the corresponding marginals. Then:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Quantum conditional mutual information

$$
I(A ; C \mid B)_{\rho}=S(A B)+S(B C)-S(B)-S(A B C)
$$

where $S(A B) \equiv S\left(\rho_{A B}\right)$ etc.

- Definition of qCMI analogous to classical quantity!
$\Rightarrow S S A \Longrightarrow I(A ; C \mid B)_{\rho} \geq 0$ for all $\rho_{A B C}$.

Strong subadditivity of von Neumann entropy

Strong subadditivity [Lieb and Ruskai 1973]:

- Let $\rho_{A B C}$ be a tripartite state, and denote by $\rho_{A B}, \rho_{B C}, \rho_{B}$ the corresponding marginals. Then:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Quantum conditional mutual information

$$
I(A ; C \mid B)_{\rho}=S(A B)+S(B C)-S(B)-S(A B C)
$$

where $S(A B) \equiv S\left(\rho_{A B}\right)$ etc.

- Definition of qCMI analogous to classical quantity!
$\Rightarrow S S A \Longrightarrow I(A ; C \mid B)_{\rho} \geq 0$ for all $\rho_{A B C}$.

Strong subadditivity of von Neumann entropy

Strong subadditivity [Lieb and Ruskai 1973]:

- Let $\rho_{A B C}$ be a tripartite state, and denote by $\rho_{A B}, \rho_{B C}, \rho_{B}$ the corresponding marginals. Then:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Quantum conditional mutual information

$$
I(A ; C \mid B)_{\rho}=S(A B)+S(B C)-S(B)-S(A B C)
$$

where $S(A B) \equiv S\left(\rho_{A B}\right)$ etc.

- Definition of qCMI analogous to classical quantity!
$-S S A \Longrightarrow I(A ; C \mid B)_{\rho} \geq 0$ for all $\rho_{A B C}$.

Strong subadditivity of von Neumann entropy

Strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Highly non-trivial statement!
- However, easy proof using data processing inequality:

$$
\begin{aligned}
S\left(\rho_{A}\right)+S\left(\rho_{B C}\right)-S\left(\rho_{A B C}\right) & =D\left(\rho_{A B C} \| \rho_{A} \otimes \rho_{B C}\right) \\
& \geq D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right) \\
& =S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)
\end{aligned}
$$

- What happens if we have equality in SSA?

D By the above: equality in SSA $\Leftrightarrow I(A ; C \mid B)=0$

Strong subadditivity of von Neumann entropy

Strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Highly non-trivial statement!
- However, easy proof using data processing inequality:

$$
\begin{aligned}
S\left(\rho_{A}\right)+S\left(\rho_{B C}\right)-S\left(\rho_{A B C}\right) & =D\left(\rho_{A B C} \| \rho_{A} \otimes \rho_{B C}\right) \\
& \geq D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right) \\
& =S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)
\end{aligned}
$$

- What happens if we have equality in SSA?
- By the above: equality in SSA $\Leftrightarrow I(A ; C \mid B)=0$

Strong subadditivity of von Neumann entropy

Strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Highly non-trivial statement!
- However, easy proof using data processing inequality:

$$
\begin{aligned}
S\left(\rho_{A}\right)+S\left(\rho_{B C}\right)-S\left(\rho_{A B C}\right) & =D\left(\rho_{A B C} \| \rho_{A} \otimes \rho_{B C}\right) \\
& \geq D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right) \\
& =S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)
\end{aligned}
$$

- What happens if we have equality in SSA?
- By the above: equality in SSA $\Leftrightarrow I(A ; C \mid B)=0$

Strong subadditivity of von Neumann entropy

Strong subadditivity:

$$
S\left(\rho_{A B C}\right)+S\left(\rho_{B}\right) \leq S\left(\rho_{A B}\right)+S\left(\rho_{B C}\right)
$$

- Highly non-trivial statement!
- However, easy proof using data processing inequality:

$$
\begin{aligned}
S\left(\rho_{A}\right)+S\left(\rho_{B C}\right)-S\left(\rho_{A B C}\right) & =D\left(\rho_{A B C} \| \rho_{A} \otimes \rho_{B C}\right) \\
& \geq D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right) \\
& =S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)
\end{aligned}
$$

- What happens if we have equality in SSA?
- By the above: equality in SSA $\Leftrightarrow I(A ; C \mid B)=0$

Strong subadditivity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

- We applied DPI with respect to partial trace over C.
- Equality condition (recovery map formulation):

There is a recovery map $\mathcal{R}_{B \rightarrow B C}: \mathcal{B}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B C}\right)$ s.t.

$$
\mathcal{R}_{B \rightarrow B C}\left(\rho_{A B}\right)=\rho_{A B C} \quad \mathcal{R}_{B \rightarrow B C}\left(\sigma_{A B}\right)=\sigma_{A B C}
$$

- Hence, we obtain:
$I(A ; C \mid B)_{\rho}=0 \longleftrightarrow \exists \mathcal{R}_{B \rightarrow B C}$ with $\rho_{B C}=\mathcal{R}_{B \rightarrow B C}\left(\rho_{B}\right)$
- That is, $A \leftrightarrow B \leftrightarrow C$ forms a (short) quantum Markov
chain iff we can recover C from B alone.

Strong subadditivity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

- We applied DPI with respect to partial trace over C.
- Equality condition (recovery map formulation):

There is a recovery map $\mathcal{R}_{B \rightarrow B C}: \mathcal{B}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B C}\right)$ s.t.

$$
\mathcal{R}_{B \rightarrow B C}\left(\rho_{A B}\right)=\rho_{A B C} \quad \mathcal{R}_{B \rightarrow B C}\left(\sigma_{A B}\right)=\sigma_{A B C}
$$

- Hence, we obtain:
- That is, $A \leftrightarrow B \leftrightarrow C$ forms a (short) quantum Markov chain iff we can recover C from B alone.

Strong subadditivity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

- We applied DPI with respect to partial trace over C.
- Equality condition (recovery map formulation):

There is a recovery map $\mathcal{R}_{B \rightarrow B C}: \mathcal{B}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B C}\right)$ s.t.

$$
\mathcal{R}_{B \rightarrow B C}\left(\rho_{A B}\right)=\rho_{A B C} \quad \mathcal{R}_{B \rightarrow B C}\left(\sigma_{A B}\right)=\sigma_{A B C}
$$

- Hence, we obtain:

$$
I(A ; C \mid B)_{\rho}=0 \Longleftrightarrow \exists \mathcal{R}_{B \rightarrow B C} \text { with } \rho_{B C}=\mathcal{R}_{B \rightarrow B C}\left(\rho_{B}\right)
$$

That is, $A \leftrightarrow B \leftrightarrow C$ forms a (short) quantum Markov
chain iff we can recover C from B alone.

Strong subadditivity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

- We applied DPI with respect to partial trace over C.
- Equality condition (recovery map formulation):

There is a recovery map $\mathcal{R}_{B \rightarrow B C}: \mathcal{B}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B C}\right)$ s.t.

$$
\mathcal{R}_{B \rightarrow B C}\left(\rho_{A B}\right)=\rho_{A B C} \quad \mathcal{R}_{B \rightarrow B C}\left(\sigma_{A B}\right)=\sigma_{A B C}
$$

- Hence, we obtain:

$$
I(A ; C \mid B)_{\rho}=0 \Longleftrightarrow \exists \mathcal{R}_{B \rightarrow B C} \text { with } \rho_{B C}=\mathcal{R}_{B \rightarrow B C}\left(\rho_{B}\right)
$$

- That is, $A \leftrightarrow B \leftrightarrow C$ forms a (short) quantum Markov chain iff we can recover C from B alone.

Table of Contents

1 Motivation: Kullback-Leibler divergence

2 Mathematics of Quantum Mechanics 101

3 Quantum relative entropy

4 Equality in data processing inequality

5 Application: Quantum Markov chains

6 Conclusion and open problems

Conclusion and open problems

Summary:

- Divergences (or relative entropies) play an important role in Classical and Quantum Information Theory.
- Their crucial property is the data processing inequality. The quantum relative entropy is an important example in Quantum Information Theory
- We derived an equality condition in the DPI for the quantum relative entropy.
- We saw how this gives rise to the notion of quantum

Markov chains.

Conclusion and open problems

Summary:

- Divergences (or relative entropies) play an important role in Classical and Quantum Information Theory.
- Their crucial property is the data processing inequality.
- The quantum relative entropy is an important example in

Quantum Information Theory.
> We derived an equality condition in the DPI for the
quantum relative entropy.
> We saw how this gives rise to the notion of quantum
Markov chains.

Conclusion and open problems

Summary:

- Divergences (or relative entropies) play an important role in Classical and Quantum Information Theory.
- Their crucial property is the data processing inequality.
- The quantum relative entropy is an important example in Quantum Information Theory.
- We derived an equality condition in the DPI for the
quantum relative entropy.
> We saw how this gives rise to the notion of quantum
Markov chains.

Conclusion and open problems

Summary:

- Divergences (or relative entropies) play an important role in Classical and Quantum Information Theory.
- Their crucial property is the data processing inequality.
- The quantum relative entropy is an important example in Quantum Information Theory.
- We derived an equality condition in the DPI for the quantum relative entropy.
- We saw how this gives rise to the notion of quantum Markov chains.

Conclusion and open problems

Summary:

- Divergences (or relative entropies) play an important role in Classical and Quantum Information Theory.
- Their crucial property is the data processing inequality.
- The quantum relative entropy is an important example in Quantum Information Theory.
- We derived an equality condition in the DPI for the quantum relative entropy.
- We saw how this gives rise to the notion of quantum Markov chains.

Conclusion and open problems

Generalized divergence:

- Crucial property of a divergence: DPI

$>\lim _{\alpha \rightarrow 1} D_{\alpha}(\rho \| \sigma)=D(\rho \| \sigma)=\lim _{\alpha \rightarrow 1} \widetilde{D}_{\alpha}(\rho \| \sigma)$.
- Both satisfy DPI in the given range.
[Petz 1986; Frank and Lieh 2013; Beigi 20131

Conclusion and open problems

Generalized divergence:

- Crucial property of a divergence: DPI
- Popular other choices: Rényi divergences

$$
\begin{array}{ll}
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right) & \alpha \in[0,2] \\
\widetilde{D}_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{(1-\alpha) / 2 \alpha} \rho \sigma^{(1-\alpha) / 2 \alpha}\right)^{\alpha} & \alpha \in[1 / 2, \infty)
\end{array}
$$

- Both satisfy DPI in the given range.
[Petz 1986; Frank and Lieh 2013; Beigi 2013]

Conclusion and open problems

Generalized divergence:

- Crucial property of a divergence: DPI
- Popular other choices: Rényi divergences
$D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right) \quad \alpha \in[0,2]$
$\widetilde{D}_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{(1-\alpha) / 2 \alpha} \rho \sigma^{(1-\alpha) / 2 \alpha}\right)^{\alpha} \quad \alpha \in[1 / 2, \infty)$
$-\lim _{\alpha \rightarrow 1} D_{\alpha}(\rho \| \sigma)=D(\rho \| \sigma)=\lim _{\alpha \rightarrow 1} \widetilde{D}_{\alpha}(\rho \| \sigma)$.
- Both satisfy DPI in the given range.
[Petz 1986: Frank and lieh 2013. Beigi 2013]

Conclusion and open problems

Generalized divergence:

- Crucial property of a divergence: DPI
- Popular other choices: Rényi divergences

$$
\begin{array}{ll}
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right) & \alpha \in[0,2] \\
\widetilde{D}_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{(1-\alpha) / 2 \alpha} \rho \sigma^{(1-\alpha) / 2 \alpha}\right)^{\alpha} & \alpha \in[1 / 2, \infty)
\end{array}
$$

$-\lim _{\alpha \rightarrow 1} D_{\alpha}(\rho \| \sigma)=D(\rho \| \sigma)=\lim _{\alpha \rightarrow 1} \widetilde{D}_{\alpha}(\rho \| \sigma)$.

- Both satisfy DPI in the given range.
[Petz 1986; Frank and Lieb 2013; Beigi 2013]

Conclusion and open problems

- α-Rényi divergence:

$$
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
$$

Equality conditions: Same as for $D(\rho \| \sigma)$! [Hiai et al. 2011]

- α-sandwiched Rényi divergence:

[Müller-Lennert et al. 2013; Wilde et al. 2014]
- Equality conditions? [FL, Rouzé, Datta]

$$
\longrightarrow \text { CQIF seminar, Fri, February 26, } 12.00 \text { (MR12)! }
$$

Conclusion and open problems

- α-Rényi divergence:

$$
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
$$

- Equality conditions: Same as for $D(\rho \| \sigma)$! [Hiai et al. 2011]

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R}
$$

- α-sandwiched Rényi divergence:

[Müller-Lennert et al. 2013; Wilde et al. 2014]
> Equality conditions? [FL, Rouzé, Datta]

Conclusion and open problems

- α-Rényi divergence:

$$
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
$$

- Equality conditions: Same as for $D(\rho \| \sigma)$! [Hiai et al. 2011]

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R}
$$

- α-sandwiched Rényi divergence:

$$
\widetilde{D}_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{(1-\alpha) / 2 \alpha} \rho \sigma^{(1-\alpha) / 2 \alpha}\right)^{\alpha}
$$

[Müller-Lennert et al. 2013; Wilde et al. 2014]

- Equality conditions? [FL, Rouzé, Datta]
\longrightarrow CQIF seminar, Fri, February 26, 12.00 (MR12)!

Conclusion and open problems

- α-Rényi divergence:

$$
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
$$

- Equality conditions: Same as for $D(\rho \| \sigma)$! [Hiai et al. 2011]

$$
\Phi^{\dagger}\left(\Phi(X)^{i t} \Phi(Y)^{-i t}\right)=X^{i t} Y^{-i t} \quad \text { for all } t \in \mathbb{R}
$$

- α-sandwiched Rényi divergence:

$$
\widetilde{D}_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{(1-\alpha) / 2 \alpha} \rho \sigma^{(1-\alpha) / 2 \alpha}\right)^{\alpha}
$$

[Müller-Lennert et al. 2013; Wilde et al. 2014]

- Equality conditions? [FL, Rouzé, Datta]
\longrightarrow CQIF seminar, Fri, February 26, 12.00 (MR12)!

References

Beigi, S. (2013). Journal of Mathematical Physics 54.12, p. 122202. arXiv: 1306.5920 [quant-ph].
Frank, R. L. and E. H. Lieb (2013). Journal of Mathematical Physics 54.12, p. 122201. arXiv: 1306.5358 [math-ph].
Hayden, P. et al. (2004). Communications in Mathematical Physics 246.2, pp. 359-374. arXiv: quant-ph/0304007.
Hiai, F. et al. (2011). Reviews in Mathematical Physics 23.07, pp. 691-747.
Lieb, E. H. and M. B. Ruskai (1973). Physical Review Letters 30 (10), pp. 434-436.
Müller-Lennert, M. et al. (2013). Journal of Mathematical Physics 54.12, p. 122203. arXiv: 1306.3142 [quant-ph].
Müller-Hermes, A. and D. Reeb (2015). arXiv preprint. arXiv: 1512.06117 [quant-ph].
Petz, D. (1986). Reports on Mathematical Physics 23.1, pp. 57-65.

- (1988). The Quarterly Journal of Mathematics 39.1, pp. 97-108.

Stinespring, W. F. (1955). Proceedings of the American Mathematical Society 6.2, pp. 211-216.
Wilde, M. M. et al. (2014). Communications in Mathematical Physics 331.2, pp. 593-622. arXiv: 1306.1586 [quant-ph].

Thank you very much for your attention!

