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Mo va on: Kullback-Leibler divergence

Let P,Q be probability distribu ons on a discrete probability

space X , and define the Kullback-Leibler divergence DKL(P∥Q):

DKL(P∥Q) :=
∑

x∈X
P(x) log

P(x)
Q(x)

.

This rela ve entropy is a premetric:

DKL(P∥Q) ≥ 0 and DKL(P∥Q) = 0 iff P = Q.
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Mo va on: Kullback-Leibler divergence

Opera onal interpreta on: Binary hypothesis tes ng

▶ Assume that we are given n independent and iden cally

distributed (i.i.d.) copies of one of two probability

distribu ons P or Q.

▶ Goal: Determine whether we have P (null hypothesis HP)

or Q (alterna ve hypothesis HQ).

▶ Two possible errors:

▷ Type-I error: We falsely reject HP.

▷ Type-II error: We falsely accept HP.
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Mo va on: Kullback-Leibler divergence

Opera onal interpreta on: Binary hypothesis tes ng

▶ In general: Trade-off between these errors.

▶ One possibility: Try to minimize both at the same me

−→ symmetric hypothesis tes ng, Chernoff bound

▶ Another one:

minimize type-II error s.t. type-I error ≤ ϵ

▶ Op mal exponent in the limit n → ∞ given by DKL(P∥Q):

type-II error ≈ exp(−nDKL(P∥Q)) for large n.
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Mo va on: Kullback-Leibler divergence

KL-divergence sa sfies the data processing inequality (DPI):

▶ Let PX, QX be probability distribu ons on X , and let

ΓY|X : X → Y ∈ X be a classical channel.

▶ Denote by PY, QY the resul ng distribu ons, that is,

PY(x) :=
∑

z∈X PX(z)ΓY|X(z|x) and similar for QY.

▶ Data processing inequality:

DKL(PX∥QX) ≥ DKL(PY∥QY)

▶ Consequence: Transforma ons ΓY|X make it harder to

discriminate between PX and QX.
7 / 43
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Mo va on: Kullback-Leibler divergence

Importance of data processing inequality

DKL(PX∥QX) ≥ DKL(PY∥QY)

▶ Phrase an informa on-theore c task in terms of

transforma ons (e.g. encoding, decoding, ...).

▶ Characterize the task by entropic quan es based on

rela ve entropies such as DKL(·∥·).

▶ Data processing inequality then allows us to derive

bounds on the op mal rate of the task.

▶ Same principle in Classical and Quantum Informa on

Theory!
8 / 43
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Mathema cs of Quantum Mechanics 101

How do we "make things quantum"?

▶ Replace the discrete probability space X by a Hilbert

spaceH of dimension |X | < ∞ (that is,H ∼= C|X |).
▶ Density operator (or mixed state) is an operator ρ ac ng

onH that is
1 posi ve: ρ ≥ 0 (that is, ⟨ψ|ρ|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H)

2 normalized: Tr ρ = 1

▶ Eigenvalues of a density matrix form a probability

distribu on!

▶ However, for a unitary U the operators ρ and UρU† have

the same eigenvalues.
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Mathema cs of Quantum Mechanics 101

▶ Interpreta on: Assume that the pure state of a system is

described by a normalized (column) vector |ψ⟩ ∈ H.

▶ Mixed state ρ =
∑

i pi|ψi⟩⟨ψi| describes a system that is

in the pure state ψi with probability pi.

(in general, |ψi⟩ ̸⊥ |ψj⟩ for i ̸= j)

▶ Spectral decomposi on of ρ:

ρ =
∑

i
λi|ei⟩⟨ei| with ⟨ei|ej⟩ = δij

where |ei⟩ is an eigenvector of ρ with eigenvalue λi ≥ 0.

▶ "Quantumness": In general, [ρ, σ] ̸= 0 for two states ρ,σ,

that is, ρ and σ have different eigenbases.
11 / 43
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Mathema cs of Quantum Mechanics 101

A bit more abstract:

▶ Density operators correspond to posi ve, normalized

elements of the C∗-algebra B(H) of linear bounded

operators ac ng on a Hilbert spaceH (for us dimH < ∞).

▶ The ∗-map is given by the adjoint † : A 7→ A†, and

∥A†A∥ = ∥A∥2 where ∥ · ∥ is the operator norm.

▶ Note that A ≥ 0 ⇒ A† = A (pos. elements are Hermi an).

▶ We equip B(H) with the Hilbert-Schmidt inner product:

⟨X, Y⟩ := Tr(X†Y)

12 / 43
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Mathema cs of Quantum Mechanics 101

Dynamical evolu on of a quantum system:

▶ A quantum channel (or quantum opera on) is a map
Λ : B(H) → B(K) that is

1 trace-preserving (TP): Tr(Λ(X)) = Tr X for all X ∈ B(H).

2 completely posi ve (CP): The map

Λ ⊗ idn : B(H)⊗Mn(C) −→ B(K)⊗Mn(C)

is posi ve for all n ∈ N. (X ≥ 0 ⇒ Λ ⊗ idn(X) ≥ 0)

▶ Define the adjoint map Λ† : B(K) → B(H) through

⟨Λ†(Y), X⟩ = ⟨Y, Λ(X)⟩ for all X ∈ B(H), Y ∈ B(K).

▶ Then Λ is TP iff Λ† is unital, i.e. Λ†(1) = 1.
13 / 43
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Mathema cs of Quantum Mechanics 101

Canonical example of quantum channel: Par al trace

▶ Consider two Hilbert spacesH1,H2.

▶ Define a linear map Tr1 : B(H1 ⊗H2) → B(H2) by

Tr1(X⊗ Y) = Tr(X)Y

for arbitrary X ∈ B(H1), Y ∈ B(H2).

▶ Trace-preserving: Tr(Tr1(X⊗ Y)) = Tr(X) Tr(Y) = Tr(X⊗ Y)

▶ Completely posi ve: Tr1 ⊗ idn is posi ve for all n ∈ N.
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Mathema cs of Quantum Mechanics 101

Importance of par al trace

1 S nespring's representa on theorem [S nespring 1955]:

Let Λ : B(H) → B(K) be a quantum channel, then there

is an isometry V : H → K⊗K′ s.t. Λ(X) = Tr2(VXV†).

(Every quantum ch. looks like the par al trace in some space.)

2 Purifica on: Let ρ ∈ B(H) be a mixed state, then there is

a Hilbert spaceH′ (we may take dimH′ = dimH) and a

pure state |ψ⟩ ∈ H ⊗H′ such that ρ = Tr2 |ψ⟩⟨ψ|.
(Every state looks like a pure state in some space.)
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Mathema cs of Quantum Mechanics 101

Operators and func onal calculus

▶ We write A ≥ B if A− B ≥ 0.

▶ Let A ≥ 0 with spectral decomposi on A =
∑

i λi|ei⟩⟨ei|,
and let f : R+ → R, then we define f(A) :=

∑
i f(λi)|ei⟩⟨ei|.

▶ f is operator monotone: A ≥ B implies f(A) ≥ f(B).

▶ f is operator convex: For λ ∈ (0, 1) and A1,A2 ≥ 0,

f(λA1 + (1− λ)A2) ≤ λf(A1) + (1− λ)f(A2)

▶ Jensen's operator inequality: f is operator convex iff

f(V†AV) ≤ V†f(A)V

for all A ≥ 0 and V with ∥V∥ ≤ 1.
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Quantum rela ve entropy

Let X, Y ∈ B(H), X, Y ≥ 0 with supp X ⊆ supp Y, then

D(X∥Y) := Tr[X(log X− log Y)]

Proper es:

▶ If X and Y are states, then D(X∥Y) ≥ 0, and= 0 iff X = Y.

▶ Correct quantum generaliza on of KL-divergence:

▷ D(P̂∥Q̂) = DKL(P∥Q) for classical states

P̂ =
∑
x∈X

P(x)|x⟩⟨x| Q̂ =
∑
x∈X

Q(x)|x⟩⟨x|.

▷ error exponent in quantum hypothesis tes ng

(just as DKL(·∥·) in classical hyp. tes ng)
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Quantum rela ve entropy

▶ Let Φ : B(H) → B(K) be TP and 2-posi ve map.
2-posi ve: For Ai ∈ B(H), i = 1, . . . , 4 we haveΦ(A1) Φ(A2)

Φ(A3) Φ(A4)

 ≥ 0 if

A1 A2

A3 A4

 ≥ 0.

▶ Then D(·∥·) sa sfies the data processing inequality

D(X∥Y) ≥ D(Φ(X)∥Φ(Y)).

▶ This holds in par cular for every CPTP map Λ.

Recall: Φ CP :⇔ Φ is n-posi ve for all n

▶ Recent result: DPI holds for every posi ve map.

[Müller-Hermes and Reeb 2015]
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Equality in data processing inequality

Theorem (Petz 1988)
Let Φ : B(H) → B(K) be a 2-posi ve TP map, and let

X, Y ∈ B(H) be inver ble density operators. Then we have

D(X∥Y) = D(Φ(X)∥Φ(Y))

if and only if for all t ∈ R

Φ†(Φ(X)itΦ(Y)−it) = XitY−it.

Remark: Assump on of inver ble X, Y can be relaxed to

supp X ⊆ supp Y.
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Equality in data processing inequality

D(X∥Y) = D(Φ(X)∥Φ(Y)) if and only if

Φ†(Φ(X)itΦ(Y)−it) = XitY−it for all t ∈ R.

▶ Algebraic condi on on map and operators.

▶ Equivalent formula on: There exists a recovery map

RΦ,Y(·) = Y1/2Φ†(Φ(Y)−1/2 · Φ(Y)−1/2) Y1/2
such thatRΦ,Y(Φ(X)) = X andRΦ,Y(Φ(Y)) = Y.

▶ RΦ,Y recovers X, Y by rever ng the ac on of Φ.

▶ Recovery on X:

X = Y1/2Φ†(Φ(Y)−1/2Φ(X)Φ(Y)−1/2) Y1/2
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Proof of the main theorem

▶ We first analyze a proof of the data processing inequality

via rela ve modular operators.

▶ Consider the mul plica on operators LA(T) := AT and
RB(T) = TB, sa sfying

▷ LA ◦ RB = RB ◦ LA.

▷ LA−1 = L−1
A if A is inver ble, likewise for RB.

▷ LA, RB are self-adjoint, and posi ve if A, B ≥ 0.

▷ For analy c f : R+ → R we have f(LA) = Lf(A) and likewise

for RB if A, B ≥ 0.
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Proof of the main theorem

▶ Define the rela ve modular operator ΔY|X = LY ◦ RX−1 .

▶ Then log ΔY|X = Llog Y − Rlog X, and

D(X∥Y) = Tr[X(log X− log Y)] = −⟨X1/2, log ΔY|X(X1/2)⟩.

▶ Assume now that Φ(X) is also inver ble, and set

Δ ≡ ΔY|X ΔΦ ≡ ΔΦ(Y)|Φ(X)

such that

D(X∥Y) = −⟨X1/2, log Δ(X1/2)⟩

D(Φ(X)∥Φ(Y)) = −⟨Φ(X)1/2, log ΔΦ(Φ(X)1/2)⟩.
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Proof of the main theorem

▶ Consider the integral representa on

log x =
∫ ∞

0

1
1+ t

− 1
x+ t

dt.

▶ We can then write

D(X∥Y) =
∫ ∞

0
⟨X1/2, (Δ + t)−1(X1/2)⟩ − (1+ t)−1 dt

D(Φ(X)∥Φ(Y)) =
∫ ∞

0
⟨Φ(X)1/2, (ΔΦ + t)−1(Φ(X)1/2)⟩

− (1+ t)−1 dt

and focus on the integrands wri en in terms of the

resolvents (Δ(Φ) + t)−1.
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Proof of the main theorem

▶ Define a linear map V : B(K) → B(H):

V(A) := Φ†(AΦ(X)−1/2) X1/2.
▶ Φ† is unital: V(Φ(X)1/2) = Φ†(1)X1/2 = X1/2.

▶ V is a contrac on: ∥V(A)∥2 ≤ ∥A∥ for all A.
▶ To show this, use the Schwarz inequality

Φ†(A†A) ≥ Φ†(A†)Φ†(A).

2-posi ve TP maps largest class of maps for which SI holds!

▶ V relates the two modular operators:

V†ΔV ≤ ΔΦ,

again by applica on of the Schwarz inequality.
26 / 43
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Proof of the main theorem

▶ V is a contrac on, and V†ΔV ≤ ΔΦ.

▶ y 7→ (y+ t)−1 is operator monotone (decreasing) and

operator convex:

(ΔΦ + t)−1 ≤ (V†ΔV+ t)−1 ≤ V†(Δ + t)−1V

(second≤ follows from Jensen's operator inequality)

▶ Hence:

⟨X1/2, (Δ + t)−1(X1/2)⟩ = ⟨VΦ(X)1/2, (Δ + t)1/2V(Φ(X)1/2)⟩

= ⟨Φ(X)1/2,V†(Δ + t)1/2V(Φ(X)1/2)⟩

≥ ⟨Φ(X)1/2, (ΔΦ + t)−1(Φ(X)1/2)⟩.
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Proof of the main theorem

▶ Recall integral representa ons:

D(X∥Y) =
∫ ∞

0
⟨X1/2, (Δ + t)−1(X1/2)⟩ − (1+ t)−1 dt

D(Φ(X)∥Φ(Y)) =
∫ ∞

0
⟨Φ(X)1/2, (ΔΦ + t)−1(Φ(X)1/2)⟩

− (1+ t)−1 dt

▶ Just proved:

⟨X1/2, (Δ + t)−1(X1/2)⟩ ≥ ⟨Φ(X)1/2, (ΔΦ + t)−1(Φ(X)1/2)⟩.

▶ Insert this in the integral representa ons:

D(X∥Y) ≥ D(Φ(X)∥Φ(Y))
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Proof of the main theorem

▶ Equality in DPI if and only if for all t > 0

⟨Φ(X)1/2,V†(Δ + t)−1V(Φ(X)1/2)⟩

= ⟨Φ(X)1/2, (ΔΦ + t)−1(Φ(X)1/2)⟩.

▶ Let A ≥ B, then ⟨v|A|v⟩ = ⟨v|B|v⟩ implies A|v⟩ = B|v⟩.

▶ Hence, V†(Δ + t)−1V(Φ(X)1/2) = (ΔΦ + t)−1(Φ(X)1/2).

▶ It follows by an easy calcula on that

∥V†(Δ + t)−1(X1/2)∥2 = ∥V†(Δ + t)−1V(Φ(X)1/2)∥2

= ∥(Δ + t)−1(X1/2)∥2.
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Proof of the main theorem

▶ ∥V†(Δ + t)−1(X1/2)∥ = ∥(Δ + t)−1(X1/2)∥2.

▶ If ∥W†|ξ⟩∥2 = ∥|ξ⟩∥2 for an arbitrary contrac onW, then

WW†|ξ⟩ = |ξ⟩

▶ Recall: V†(Δ + t)−1(X1/2) = (ΔΦ + t)−1(Φ(X)1/2)

▶ Then: V(ΔΦ + t)−1(Φ(X)1/2) = (Δ + t)−1(X1/2).

▶ That is, the resolvents of ΔΦ and Δ coincide on the vectors

Φ(X)1/2 and X1/2, respec vely (modulo V).
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Proof of the main theorem

▶ The resolvent of an operator O determines the projec ons

onto the eigenspaces of O.

▶ Hence, for every polynomial p we have

Vp(ΔΦ)(Φ(X)1/2) = p(Δ)(X1/2).

▶ Stone-Weierstrass approxima on theorem: polynomials

are dense in the space of con nuous func ons

▶ Hence, for every con nuous f we have

Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2).
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Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Vf(ΔΦ)(Φ(X)1/2) = f(Δ)(X1/2) for all con nuous f.

▶ Choose f(x) = xit, then

VΔit
Φ(Φ(X)1/2) = Δit(X1/2)

⇔ V(Φ(Y)itΦ(X)−itΦ(X)1/2) = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it)X1/2 = YitX−itX1/2

⇔ Φ†(Φ(Y)itΦ(X)−it) = YitX−it

⇔ Φ†(Φ(X)itΦ(Y)−it) = XitY−it

The last line follows from taking the adjoint and using the fact

that Λ(A)† = Λ(A†) for a posi ve map Λ.

32 / 43



Proof of the main theorem

▶ Proven so far:

D(X∥Y) = D(Φ(X)∥Φ(Y))

=⇒ Φ†(Φ(X)itΦ(Y)−it) = XitY−it for all t > 0.

▶ To prove sufficiency of Φ†(Φ(X)itΦ(Y)−it) = XitY−it,

differen ate this at t = 0:

Φ†(log Φ(X)− log Φ(Y)) = log X− log Y

▶ Using the defini on of Φ†, this implies equality in the data

processing inequality.
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von Neumann entropy

For a state ρ define the von Neumann entropy

S(ρ) = − Tr ρ log ρ = −D(ρ∥1).

▶ S(ρ) = H({λi}i) where λi are the eigenvalues of ρ and

H({pi}i) = −
∑

i pi log pi is the Shannon entropy.

▶ 0 ≤ S(ρ) ≤ log dimH for all states ρ onH.

▶ Addi vity: S(ρ⊗ σ) = S(ρ) + S(σ)

▶ Subaddi vity: Let ρAB be a state on a bipar te system

HA ⊗HB and set ρA = TrB ρAB and ρB = TrA ρAB. Then,

S(ρAB) ≤ S(ρA) + S(ρB).
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Strong subaddi vity of von Neumann entropy

Strong subaddi vity [Lieb and Ruskai 1973]:

▶ Let ρABC be a tripar te state, and denote by ρAB, ρBC, ρB
the corresponding marginals. Then:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC).

▶ Quantum condi onal mutual informa on

I(A; C|B)ρ = S(AB) + S(BC)− S(B)− S(ABC)

where S(AB) ≡ S(ρAB) etc.

▶ Defini on of qCMI analogous to classical quan ty!

▶ SSA=⇒ I(A; C|B)ρ ≥ 0 for all ρABC.
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Strong subaddi vity:
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Strong subaddi vity of von Neumann entropy

Equality in SSA [Hayden et al. 2004]:

▶ We applied DPI with respect to par al trace over C.

▶ Equality condi on (recovery map formula on):

There is a recovery mapRB→BC : B(HB) → B(HBC) s.t.

RB→BC(ρAB) = ρABC RB→BC(σAB) = σABC

▶ Hence, we obtain:

I(A; C|B)ρ = 0 ⇐⇒ ∃RB→BC with ρBC = RB→BC(ρB)

▶ That is, A ↔ B ↔ C forms a (short) quantumMarkov

chain iff we can recover C from B alone.
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Conclusion and open problems

Summary:

▶ Divergences (or rela ve entropies) play an important role

in Classical and Quantum Informa on Theory.

▶ Their crucial property is the data processing inequality.

▶ The quantum rela ve entropy is an important example in

Quantum Informa on Theory.

▶ We derived an equality condi on in the DPI for the

quantum rela ve entropy.

▶ We saw how this gives rise to the no on of quantum

Markov chains.
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Conclusion and open problems

Generalized divergence:

▶ Crucial property of a divergence: DPI

▶ Popular other choices: Rényi divergences

Dα(ρ∥σ) =
1

α − 1
log Tr(ρασ1−α) α ∈ [0, 2]

D̃α(ρ∥σ) =
1

α − 1
log Tr

(
σ(1−α)/2αρσ(1−α)/2α)α α ∈ [1/2,∞)

▶ limα→1 Dα(ρ∥σ) = D(ρ∥σ) = limα→1 D̃α(ρ∥σ).

▶ Both sa sfy DPI in the given range.

[Petz 1986; Frank and Lieb 2013; Beigi 2013]

41 / 43



Conclusion and open problems

Generalized divergence:

▶ Crucial property of a divergence: DPI

▶ Popular other choices: Rényi divergences

Dα(ρ∥σ) =
1

α − 1
log Tr(ρασ1−α) α ∈ [0, 2]

D̃α(ρ∥σ) =
1

α − 1
log Tr

(
σ(1−α)/2αρσ(1−α)/2α)α α ∈ [1/2,∞)

▶ limα→1 Dα(ρ∥σ) = D(ρ∥σ) = limα→1 D̃α(ρ∥σ).

▶ Both sa sfy DPI in the given range.

[Petz 1986; Frank and Lieb 2013; Beigi 2013]

41 / 43



Conclusion and open problems

Generalized divergence:

▶ Crucial property of a divergence: DPI

▶ Popular other choices: Rényi divergences

Dα(ρ∥σ) =
1

α − 1
log Tr(ρασ1−α) α ∈ [0, 2]

D̃α(ρ∥σ) =
1

α − 1
log Tr

(
σ(1−α)/2αρσ(1−α)/2α)α α ∈ [1/2,∞)

▶ limα→1 Dα(ρ∥σ) = D(ρ∥σ) = limα→1 D̃α(ρ∥σ).

▶ Both sa sfy DPI in the given range.

[Petz 1986; Frank and Lieb 2013; Beigi 2013]

41 / 43



Conclusion and open problems

Generalized divergence:

▶ Crucial property of a divergence: DPI

▶ Popular other choices: Rényi divergences

Dα(ρ∥σ) =
1

α − 1
log Tr(ρασ1−α) α ∈ [0, 2]

D̃α(ρ∥σ) =
1

α − 1
log Tr

(
σ(1−α)/2αρσ(1−α)/2α)α α ∈ [1/2,∞)

▶ limα→1 Dα(ρ∥σ) = D(ρ∥σ) = limα→1 D̃α(ρ∥σ).

▶ Both sa sfy DPI in the given range.

[Petz 1986; Frank and Lieb 2013; Beigi 2013]

41 / 43



Conclusion and open problems

▶ α-Rényi divergence:

Dα(ρ∥σ) =
1

α − 1
log Tr(ρασ1−α)

▶ Equality condi ons: Same as for D(ρ∥σ)! [Hiai et al. 2011]

Φ†(Φ(X)itΦ(Y)−it) = XitY−it for all t ∈ R.

▶ α-sandwiched Rényi divergence:

D̃α(ρ∥σ) =
1

α − 1
log Tr

(
σ(1−α)/2αρσ(1−α)/2α)α

[Müller-Lennert et al. 2013; Wilde et al. 2014]

▶ Equality condi ons? [FL, Rouzé, Da a]

−→ CQIF seminar, Fri, February 26, 12.00 (MR12)!
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