Dephrasure channel and

superadditivity of coherent information

Felix Leditzky

(JILA & CTQM, University of Colorado Boulder)

joint work with Debbie Leung and Graeme Smith arXiv:1806.08327

> Beyond IID, Cambridge, UK 26 July 2018

1 Quantum capacity of a quantum channel

2 (Anti)degradable channels and quantum capacity bounds

3 Dephrasure channel and its properties

4 Summary & Outlook

Table of Contents

1 Quantum capacity of a quantum channel

2 (Anti)degradable channels and quantum capacity bounds

3 Dephrasure channel and its properties

4 Summary & Outlook

Entanglement generation

 Entanglement can be used as a resource in: teleportation, dense coding, entanglement-assisted communication, ...

► Assume Alice and Bob can communicate via a noisy quantum channel N : A → B.

Entanglement generation: Use the noisy channel and local operations to generate entanglement between the parties.

We can allow for one-way classical communication without changing the task.

Entanglement generation

- ▶ **Goal:** Generate m_n ebits $|\Phi_+\rangle \sim |00\rangle + |11\rangle$ through *n* uses of the quantum channel N.
- Alice prepares $|\psi\rangle_{RA^n}$ and sends A^n to **Bob** through $\mathcal{N}^{\otimes n}$.

• Quantum capacity
$$Q(\mathcal{N}) \coloneqq \sup \left\{ \lim \frac{m_n}{n} \text{ s.t. } \varepsilon \xrightarrow{n \to \infty} 0 \right\}.$$

Quantum capacity

Coding theorem:

[Lloyd 1997; Shor 2002; Devetak 2005]

$$Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} Q^{(1)}(\mathcal{N}^{\otimes n})$$
(*)

where the **channel coherent information** $Q^{(1)}(\cdot)$ is defined as

$$Q^{(1)}(\mathcal{N})\coloneqq\max_{ert\psi
angle_{A'A}}I(A'
angle B)_{(\mathrm{id}\otimes\mathcal{N})(\psi)}$$

with the coherent information $I(P \land Q)_{\rho} = S(Q)_{\rho} - S(PQ)_{\rho}$.

Regularized formula (*) in general **intractable to compute**.

Notorious example: Qubit depolarizing channel

$$\mathcal{D}_{\rho}(\rho) \coloneqq (1-\rho)\rho + rac{\rho}{3}(X\rho X + Y\rho Y + Z\rho Z).$$

▶ Known: $Q(D_0) = 1$ and $Q(D_p) = 0$ for $p \ge 0.25$ (no-cloning).

Qubit depolarizing channel

• Unknown:
$$Q(\mathcal{D}_p)$$
 for $p \in (0, 1/4)$.

• Partial answer for *low noise* ($p \gtrsim 0$):

$$\mathcal{D}_{p}pprox \operatorname{id} \quad \Longrightarrow \quad \mathcal{Q}(\mathcal{D}_{p})pprox \mathcal{Q}^{(1)}(\mathcal{D}_{p}) \quad ext{ up to } \mathcal{O}(p^{2}\log p)$$

[FL, Leung, Smith 2017] based on [Sutter et al. 2017]

- ► Superadditivity: $Q^{(1)}(\mathcal{D}_p) = 0$ for $p \ge 0.1894$, but $Q^{(1)}(\mathcal{D}_p^{\otimes 3}) > 0$ for $p \le 0.1901$. [DiVincenzo et al. 1998]
- Achieved by repetition code $\sim |0\rangle^{\otimes n} + |1\rangle^{\otimes n}$ (degenerate code).
- ▶ Result: there are \mathcal{N} and $n \in \mathbb{N}$ s.t. $Q^{(1)}(\mathcal{N}^{\otimes n}) > nQ^{(1)}(\mathcal{N})$.
- ► For which channels is superadditivity *not possible*, i.e., $Q^{(1)}(\mathcal{N}^{\otimes n}) \leq nQ^{(1)}(\mathcal{N})$?

Table of Contents

1 Quantum capacity of a quantum channel

2 (Anti)degradable channels and quantum capacity bounds

3 Dephrasure channel and its properties

Degradable and antidegradable channels

- Complementary channel N^c: A → E associated to N models the leakage of information to the environment.
- ▶ Degradable channels have additive channel coherent information, $Q^{(1)}(N^{\otimes n}) = nQ^{(1)}(N)$. [Devetak and Shor 2005]
- Single-letter quantum capacity: $Q(\mathcal{N}) = Q^{(1)}(\mathcal{N})$.

degradable: $\exists \mathcal{D}: B \to E \text{ s.t.}$ $\mathcal{N}^c = \mathcal{D} \circ \mathcal{N}$ antidegradable:

$$\exists \mathcal{A} \colon E \to B \text{ s.t.}$$
$$\mathcal{N} = \mathcal{A} \circ \mathcal{N}^{c}$$

Degradable and antidegradable channels

- Antidegradable channels: $Q(\mathcal{N}) = 0$ due to **no-cloning**.
- ▶ Data-processing: $Q^{(1)}(\mathcal{N}) \leq 0$ for antidegradable channels.
- \mathcal{D}_p is antidegradable for $p \ge 1/4$.

Methods of bounding the quantum capacity

- Given a quantum channel that is not degradable/antidegradable, how can we bound its quantum capacity?
- ▶ If channel is almost degradable, then capacity $Q(\cdot)$ should be close to $Q^{(1)}(\cdot) \rightarrow$ approximate degradability [Sutter et al. 2017]
- ▶ Give additional resources (NS/PPT-assistance) to the communicating parties that make quantities more "well-behaved". → SDP bounds

[Leung and Matthews 2015; Wang et al. 2017]

 Decompose the channel into degradable/antidegradable parts and use their nice properties.

 \rightarrow [Smith and Smolin 2008] [FL, Datta, Smith 2017]

Decomposition method

Main insight: Q(·) is convex on channels with additive Q⁽¹⁾(·).
 [Wolf and Pérez-García 2007]

This is true even if the channels in a decomposition are only completely positive, but not necessarily trace-preserving.

Upper bound on $Q(\cdot)$

[FL, Datta, Smith 2018; Yang (in prep.)]

Let $\mathcal{N} = \sum_{i} p_i \mathcal{E}_i + \sum_{i} q_i \mathcal{F}_i$, where the \mathcal{E}_i are **degradable** CP maps and the \mathcal{F}_i are **antidegradable**. Then,

 $Q(\mathcal{N}) \leq \sum_{i} p_{i} Q^{(1)}(\mathcal{E}_{i}).$

► This yields strongest upper bound on $Q(D_p)$ in high-noise regime (presented at BIID '17).

Optimality of our bound

Main principle

For a channel $\mathcal{N}=(\mathtt{1}-\lambda)\mathcal{E}+\lambda\mathcal{F}$, with $\mathcal E$ degradable and $\mathcal F$

antidegradable, we only count degradable contributions:

$$Q(\mathcal{N}) \leq (1-\lambda)Q^{(1)}(\mathcal{E}) = (1-\lambda)Q^{(1)}(\mathcal{E}) + \lambda \underbrace{Q^{(1)}(\mathcal{F})}_{=0}$$

Is there hope to improve our bound by also counting (negative) antidegradable contributions from a joint optimization?

$$\begin{array}{ll} (1-\lambda) \max_{\varphi} \textit{I}(A \rangle \textit{B})_{\mathcal{E}(\varphi)} + \lambda \max_{\varphi} \textit{I}(A \rangle \textit{B})_{\mathcal{F}(\varphi)} & \geq & \textit{Q}(\mathcal{N}) \\ & \geq \checkmark & & \geq ? \\ \text{convexity} & \max_{\varphi} \left\{ (1-\lambda)\textit{I}(A \rangle \textit{B})_{\mathcal{E}(\varphi)} + \lambda \underbrace{\textit{I}(A \rangle \textit{B})_{\mathcal{F}(\varphi)}}_{\leq 0} \right\} \\ \text{of max}(\cdot) & & \leq 0 \end{array}$$

Optimality of our bound

Simple case: flagged channel (\mathcal{E} deg., \mathcal{F} antideg.)

$$\mathcal{N}_{f} = (1 - \lambda) \mathcal{E} \otimes |0\rangle \langle 0| + \lambda \mathcal{F} \otimes |1\rangle \langle 1|$$
 (*)

Bob can decide which channel occurred by first measuring flag.

Easy to show:

$$\mathcal{Q}^{(1)}(\mathcal{N}_{f}) = \max_{arphi} ig\{ (1-\lambda) \textit{I}(A ar{B})_{\mathcal{E}(arphi)} + \lambda \textit{I}(A ar{B})_{\mathcal{F}(arphi)} ig\}$$

- This is the conjectured upper bound on $Q(\cdot)!$
- ▶ Hence, if true, any channel N_f of the form (*) must have additive coherent information, since

 $Q^{(1)}(\mathcal{N}_f) \leq Q(\mathcal{N}_f) \leq \text{ conj. upper bound } = Q^{(1)}(\mathcal{N}_f).$

Counterexample! —> Dephrasure channel

Table of Contents

1 Quantum capacity of a quantum channel

2 (Anti)degradable channels and quantum capacity bounds

3 Dephrasure channel and its properties

Introducing: the dephrasure channel

Dephrasure channel

(dephasing + erasure)

For $p, q \in [0, 1]$,

$$\mathcal{N}_{
ho,\,q}(
ho)\coloneqq (1-q)((1-
ho)
ho+
ho Z
ho Z)+q\,\mathsf{Tr}(
ho)|e
angle\langle e|.$$

Dephrasure channel is of the form

(1-q) deg. +q antideg.

- Flagged channel, since $\langle e | \rho | e \rangle = 0$ for all ρ .
- Restrict to $p, q \in [0, 1/2]$ from now on.

► $\mathcal{N}_{p,q}$ is **simple but weird**: exhibits superadditivity of coherent information already for two uses of the channel.

Dephrasure channel:

 $\mathcal{N}_{
ho,\,q}(
ho) = (1-q)((1ho)
ho+
ho Z
ho Z)+q\, {\sf Tr}(
ho)|e
angle\langle e|$

Complementary channel:

$$\mathcal{N}_{\rho,\,q}^{\mathsf{c}}(\rho) = q\,\rho \oplus (1-q)\sum_{\mathsf{x}=\mathsf{0},\,\mathsf{1}} \langle \mathsf{x}|
ho|\mathsf{x}
angle|\varphi_{\rho}^{\mathsf{x}}
angle\langle \varphi_{\rho}^{\mathsf{x}}|,$$

where $\ket{\varphi_{p}^{x}}=\sqrt{1-p}\ket{0}+(-1)^{x}\sqrt{p}\ket{1}.$

- Complementary channel is also flagged!
- ▶ Want to construct antidegrading map \mathcal{A} such that $\mathcal{N}_{p,q} = \mathcal{A} \circ \mathcal{N}_{p,q}^{c}$.

Idea: unambiguous state discrimination for φ_p^x .

Unambiguous state discrimination (USD):

• Input: two non-orthogonal states $|\psi_1\rangle$, $|\psi_2\rangle$ with $\langle\psi_1|\psi_2\rangle \neq 0$.

• Design POVM
$$\{\Pi_1, \Pi_2, \Pi_7\}$$
 such that
 $\langle \psi_1 | \Pi_2 | \psi_1 \rangle = \langle \psi_2 | \Pi_1 | \psi_2 \rangle = 0.$

- Hence, when receiving outcome "1" or "2" we are certain that we have ψ₁ or ψ₂.
- Have to abort if we get outcome "?".
- Optimal measurement: min Pr(?) = $|\langle \psi_1 | \psi_2 \rangle|$

[Ivanovic 1987; Dieks 1988; Peres 1988]

Strategy:

$$\mathcal{N}_{p,q}^{c}(\rho) = q \, \rho \otimes |0\rangle \langle 0|_{F} + (1-q) \sum_{x=0,1} \langle x|\rho|x\rangle |\varphi_{p}^{x}\rangle \langle \varphi_{p}^{x}| \otimes |1\rangle \langle 1|_{F}$$
measure flag *F*
outcome $|0\rangle \langle 0|$:
outcome $|1\rangle \langle 1|$:
post-process ρ
USD to recover $\langle x|\rho|x\rangle$
(erase with prob. $1 - \frac{(1-q)(1-2p)}{q}$)
(erase on "?")

► Resulting map successfully degrades $\mathcal{N}_{\rho,q}^c$ to $\mathcal{N}_{\rho,q}(\rho) = (1-q)((1-\rho)\rho + \rho Z \rho Z) + q \operatorname{Tr}(\rho)|e\rangle\langle e|.$

• Map is completely positive iff $q \ge (1-q)(1-2p)$.

Single-letter coherent information

- For superadditivity of coherent information: need to know $Q^{(1)}(\mathcal{N}_{p,q})$.
- Erasure flag: easy to show that

$$Q^{(1)}(\mathcal{N}_{p,q}) = \max_{|arphi\rangle_{\mathcal{A}\mathcal{A}'}} \{(1-q)I(\mathcal{A}\rangle\mathcal{B})_{\mathcal{Z}_p(arphi)} - qS(\mathcal{A})_{arphi}\},$$

where $\mathcal{Z}_{\rho}(\rho)$ is the dephasing channel.

Form of $Q^{(1)}(\mathcal{N}_{p,q})$ suggests that optimal state is diagonal in *Z*-basis \longrightarrow true! (simple calculus)

•
$$Q^{(1)}(\mathcal{N}_{p,q}) = \max_{z} \left\{ (1-2q) S \begin{pmatrix} (1+z)/2 & 0 \\ 0 & (1-z)/2 \end{pmatrix} - (1-q) S \begin{pmatrix} 1-p & z\sqrt{p(1-p)} \\ z\sqrt{p(1-p)} & p \end{pmatrix} \right\}$$

Single-letter coherent information

$$\blacktriangleright Q^{(1)}(\mathcal{N}_{p,q}) = \max_{|\varphi\rangle_{AA'}} \{ (1-q)I(A\rangle B)_{\mathcal{Z}_p(\varphi)} - qS(\varphi_A) \}.$$

--- $Q^{(1)}(\mathcal{N}_{p,\,q})=0$

inside green line: optimizing state φ_A diagonal in Z-basis red region: completely mixed state maximizes $Q^{(1)}(\mathcal{N}_{p,q})$ within blue region:

examples of superadditivity!

First thing to try... weighted repetition code:

$$|arphi_n
angle = \sqrt{\lambda}\,|0
angle_{\scriptscriptstyle R}|0
angle_{\scriptscriptstyle A}^{\otimes n} + \sqrt{1-\lambda}\,|1
angle_{\scriptscriptstyle R}|1
angle_{\scriptscriptstyle A}^{\otimes n}$$

For n = 1, this is the optimal single-letter code.

$$\blacktriangleright \ \mathcal{N}_{p,q}^{\otimes n} = ((1-q)\mathcal{Z}_p + q\operatorname{Tr}(\cdot)|e\rangle\langle e|)^{\otimes n}:$$

sum of channels of the form $\mathcal{Z}_p^{\otimes k} \otimes (\mathsf{Tr}(\cdot)|e\rangle\langle e|)^{\otimes n-k}$.

- ► Coherent information splits up into different erasure patterns, since $S(\sum_i p_i \rho_i \otimes |i\rangle \langle i|) = \sum_i \rho_i S(\rho_i) + H(\{p_i\}).$
- Repetition code: all partial erasures cancel.
- Easy: compute action of dephasing $\mathcal{Z}_{p}^{\otimes n}$ on repetition code.

• (Almost) closed formula for repetition code ($\varphi_n = \varphi_n(\lambda)$):

$$egin{aligned} \mathcal{Q}^{(1)}(arphi_n,\mathcal{N}_{
ho,q}^{\otimes n}) &= \left((1-q)^n-q^n
ight)h(\lambda) \ &-(1-q)^n\left(1-u\operatorname{artanh}u-rac{1}{2}\log\left(1-u^2
ight)
ight). \end{aligned}$$

•
$$u = u(\lambda, p, n) = \sqrt{1 - 4\lambda(1 - \lambda)(1 - (1 - 2p)^{2n})}.$$

► $h(\lambda) = -\lambda \log \lambda - (1 - \lambda) \log(1 - \lambda)$ is the binary entropy of λ .

To get superadditivity, maximize over parameter λ (weight of logical |0⟩ in the repetition code).

- $\blacktriangleright \ \text{Weighted repetition code } |\varphi_n\rangle := \sqrt{\lambda} |0\rangle^{\otimes n+1} + \sqrt{1-\lambda} |1\rangle^{\otimes n+1}.$
- Plot for n = 2, 3 of the non-negative part of

$$\frac{1}{n}\max_{\lambda}I(A\rangle B^{n})_{\mathcal{N}_{p,q}^{\otimes n}(\varphi_{n})}-Q^{(1)}(\mathcal{N}_{p,q})$$

- $\blacktriangleright \ \text{Weighted repetition code } |\varphi_n\rangle := \sqrt{\lambda} |0\rangle^{\otimes n+1} + \sqrt{1-\lambda} |1\rangle^{\otimes n+1}.$
- ▶ Plot for *n* = 4, 5 of the non-negative part of

$$\frac{1}{n}\max_{\lambda}I(A\rangle B^{n})_{\mathcal{N}_{p,q}^{\otimes n}(\varphi_{n})}-Q^{(1)}(\mathcal{N}_{p,q})$$

Superadditivity also holds in the "extreme form":

 $Q^{(1)}(\mathcal{N}_{p,q})=0 \quad ext{but} \quad Q^{(1)}(arphi_n,\mathcal{N}_{p,q}^{\otimes n})>0$

for $n \ge 2$ and some $p, q \longrightarrow$ increased threshold.

▶ We also have more elaborate codes achieving superadditivity, for example for n = 3: $|\chi_3\rangle := |00\rangle|00\rangle \otimes |\psi_1\rangle + |11\rangle|11\rangle \otimes |\psi_1\rangle$ $+|01\rangle|01\rangle \otimes |\psi_2\rangle + |10\rangle|10\rangle \otimes X|\psi_2\rangle$,

for some pure states $|\psi_i\rangle$.

We also found good codes using a neural network state ansatz.

[Bausch, FL; arXiv:1806.08781]

► Not clear whether optimal codes for n ≥ 2 are diagonal in Z-basis (true for n = 1)!

- ▶ Plot for $\mathcal{N}_{p,3p}$ along diagonal (p, 3p)
- Threshold is increased by repetition codes φ_n .

Numerical optimization techniques

- ► Easy observation: $I(A \rangle B)_{\psi \otimes \mathcal{N}(\varphi)} = 0$ for a product input state $|\psi\rangle_A \otimes |\varphi\rangle_{A'}$.
- Hence, many local maxima in high-noise regime where most states have negative channel coherent information.
- ▶ Gradient is likely to get stuck → gradient-free optimization?
- Many biology-inspired examples: genetic algorithms, artificial bee colonization, particle swarm optimization (PSO)
- Idea of PSO:
 - ▷ Send out *N* particles, each probing the landscape.
 - Each particle records personal best function value, and all know the global swarm best.
 - In each iteration, particle velocity is updated with weights towards personal best, global best, and inertial movement.

Ackley function:
$$f(x, y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp \left[0.5(\cos 2\pi x + \cos 2\pi y)\right] + e + 20$$

Ackley function:
$$f(x, y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp \left[0.5(\cos 2\pi x + \cos 2\pi y)\right] + e + 20$$

Ackley function:
$$f(x, y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp \left[0.5(\cos 2\pi x + \cos 2\pi y)\right] + e + 20$$

Ackley function:
$$f(x, y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp \left[0.5(\cos 2\pi x + \cos 2\pi y)\right] + e + 20$$

-2

-4

-6 <u>-</u>6

-2

-4

0

2

4

6

-4

-6 <u>-</u>6

0

2

4

6

-2

Ackley function:
$$f(x, y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)}\right] - \exp \left[0.5(\cos 2\pi x + \cos 2\pi y)\right] + e + 20$$

29/37

Private capacity of a quantum channel

Private capacity $P(\mathcal{N})$: highest rate of **private classical** communication between Alice and Bob

Coding theorem:

[Devetak 2005; Cai et al. 2004]

$$P(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} P^{(1)}(\mathcal{N}^{\otimes n})$$

with the private information

$$P^{(1)}(\mathcal{N}) = \max_{\{\rho_i, \rho_i\}} [I(X; B)_{\rho} - I(X; E)_{\rho}].$$

Private information can be superadditive,

[Smith et al. 2008]

$$P^{(1)}(\mathcal{N}^{\otimes n}) > nP^{(1)}(\mathcal{N}).$$

Private capacity of a quantum channel

Quantum information transmission is necessarily private:

 $P(\mathcal{N}) \geq Q(\mathcal{N}).$

▶ Also holds for information quantities: $P^{(1)}(\mathcal{N}) \ge Q^{(1)}(\mathcal{N})$.

For degradable channels: [Smith 2008]

$$P(\mathcal{N}) = Q(\mathcal{N}) = Q^{(1)}(\mathcal{N}) = P^{(1)}(\mathcal{N}).$$

- For antidegradable channels: $P(\mathcal{N}) = 0 = Q(\mathcal{N})$.
- There are channels with Q(N) = 0 and P(N) > 0 (e.g. entanglement-binding channels).
- ► Leads to superactivation of $Q(\cdot)$: $\exists N_1, N_2$ with $Q(N_i) = 0$ but $Q(N_1 \otimes N_2) > 0.$ [Smith and Yard 2008]

Separation of private and coherent information

Numerical investigations suggest the following is an optimal private ensemble:
 $(|\pm\rangle \sim |0\rangle \pm |1\rangle)$

р

Separation of private and coherent information

Separation of capacities? $P(\mathcal{N}_{p,q}) > Q(\mathcal{N}_{p,q}) (= 0)$?

superadditivity of private information?

 $P^{(1)}(\mathcal{N}_{p,q}^{\otimes n}) > nP^{(1)}(\mathcal{N}_{p,q})$?

Table of Contents

1 Quantum capacity of a quantum channel

2 (Anti)degradable channels and quantum capacity bounds

3 Dephrasure channel and its properties

Summary

- Discussed an upper bound on quantum capacity of a channel based on decomposition into degradable and antidegradable channels.
- Question of optimality leads to the dephrasure channel

$$\mathcal{N}_{
ho,q}(
ho) = (1-q)((1-
ho)
ho+
ho Z
ho Z)+q\, {
m Tr}(
ho)|e
angle\langle e|.$$

- Dephrasure channel checks a lot of marks on "weirdness chart":
 - > superadditivity of coherent information for two uses
 - separation of private and coherent information
 - possible superadditivity of private information?

Outlook

- Some open questions:
 - Formula for single-letter private information (needed to show superadditivity)?
 - ▷ Tight upper bounds on quantum capacity?
 - ▷ Increase threshold up to region of antidegradability?
- ► Further effects of superadditivity? → superadditivity in classical communication with limited entanglement assistance (ongoing work with Elton Zhu, Quntao Zhuang)
- Can we understand the superadditivity of coherent information in the light of the recent work on α-bit capacities?

References

Bausch, J. and F. Leditzky (2018). arXiv preprint. arXiv: 1806.08781 [quant-ph].

Cai, N. et al. (2004). Problems of Information Transmission 40.4, pp. 318–336.

Devetak, I. (2005). IEEE TIT 51.1, pp. 44-55. arXiv: quant-ph/0304127.

Devetak, I. and P. W. Shor (2005). CMP 256.2, pp. 287–303. arXiv: quant-ph/0311131 [quant-ph].

DiVincenzo, D. P. et al. (1998). Physical Review A 57.2, p. 830. arXiv: quant-ph/9706061.

Dieks, D. (1988). Physics Letters A 126.5, pp. 303-306.

Ivanovic, I. (1987). Physics Letters A 123.6, pp. 257-259.

Leditzky, F. et al. (2018a). IEEE TIT 64.7, pp. 4689-4708. arXiv: 1701.03081 [quant-ph].

Leditzky, F. et al. (2018b). Physical Review Letters 120.16, p. 160503. arXiv: 1705.04335 [quant-ph].

Leung, D. and W. Matthews (2015). IEEE TIT 61.8, pp. 4486-4499. arXiv: 1406.7142 [quant-ph].

Lloyd, S. (1997). Physical Review A 55.3, p. 1613. arXiv: quant-ph/9604015.

Peres, A. (1988). Physics Letters A 128.1, p. 19.

Shor, P. W. (2002). MSRI Workshop on Quantum Computation. Berkeley, CA, USA.

Smith, G. (2008). Physical Review A 78.2, p. 022306. arXiv: 0705.3838 [quant-ph].

Smith, G. and J. A. Smolin (2008). 2008 IEEE ITW. IEEE, pp. 368–372. arXiv: 0712.2471 [quant-ph].

Smith, G. and J. Yard (2008). Science 321.5897, pp. 1812–1815. arXiv: 0807.4935 [quant-ph].

Smith, G. et al. (2008). Physical Review Letters 100.17, p. 170502. arXiv: quant-ph/0607018.

Sutter, D. et al. (2017). IEEE TIT 63.12, pp. 7832-7844. arXiv: 1412.0980 [quant-ph].

Wang, X. et al. (2017). arXiv preprint. arXiv: 1709.00200 [quant-ph].

Wolf, M. M. and D. Pérez-García (2007). Physical Review A 75.1, p. 012303. arXiv: quant-ph/0607070.

Yang, D. Manuscript in preparation.

Thank you very much for your attention!

Announcement: QIP 2019

QIP 2019: Jan 14-18, 2019 at

Website: jila.colorado.edu/qip2019

Local organizers: Felix Leditzky, Graeme Smith

Program committee chair: Matthias Christandl

Submission deadline: sometime in September (TBD)